Circular Motion and Gravitation

Ch 7

Objectives

- Solve problems involving centripetal acceleration.
- Solve problems involving centripetal force.
- Explain how the apparent existence of an outward force in circular motion can be explained as inertia resisting the centripetal force.

Circular Motion

7.1

Circular Motion

- Any object that revolves around a single axis is in circular motion
- The axis of rotation is the line that "rotates" around the axis
- Question:
- The Axis of rotation for a car tire is....

Tangential Speed

- The tangential speed $\left(v_{t}\right)$ of an object in circular motion is the object's speed along an imaginary line drawn tangent to the circular path.
- Tangential speed depends on the distance from the object to the center of the circular path.
- When the tangential speed is constant, the motion is described as uniform circular motion.

Centripetal Acceleration

- Even at a constant speed, an object following circular motion is accelerating!

Centripetal Accel.

Centripetal Acceleration

- (a) As the particle moves from A to B, the direction of the particle's velocity vector changes.
- (b) For short time intervals, $\Delta \mathbf{v}$ is directed toward the center of the circle.
- Centripetal acceleration is always directed toward the center of a circle.

$$
\begin{aligned}
\text { Centripetal Accel. } & =\frac{(\text { tang. speed })^{2}}{\text { radius of circ.path }} \\
a_{c} & =\frac{v_{t}^{2}}{r}
\end{aligned}
$$

A girl is swinging on a tire swing. If the she has an centripetal acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ and the rope is 2.1 meters long, what is the girls tangential speed?
$a_{c}=\frac{v_{t}{ }^{2}}{r}$
A car is moving around a circular track with a centripetal acceleration of $15 \mathrm{~m} / \mathrm{s}^{2}$. If the car has a tangential speed of 31 m / s, what is the distance between the car and the center of the track?

Tang. Acceleration

- You have seen that centripetal acceleration results from a change in direction.
- In circular motion, an acceleration due to a change in speed is called tangential acceleration.
- Think of a car driving in a circle...
- Because the car is moving in a circle, the car has a centripetal component of acceleration.
- If the car's speed changes, the car also has a tangential component of acceleration.

Centripetal Force

- Example: Swinging a ball around in a horizontal circular path with a constant speed
- Constants: Mass and r (distance ball is from center)

Centripetal Force

- The force exerted by the string has horizontal and vertical components. The vertical component is equal and opposite to the gravitational force. The horizontal component is the net force
- This net force, which is directed toward the center of the circle, is a centripetal force.

Centripetal Force

- Equation

Centripetal Force $=\frac{\text { mass } *(\text { tang.speed })^{2}}{\text { radius of circ.path }}$

$$
F_{c}=\frac{m v_{t}^{2}}{r}
$$

A 905 kg car travels around a circular track is a circumference of $\quad F_{c}=\frac{m v_{t}}{r}$ 3.25 km . If there is a 2140 N centripetal force, what is the tangential speed of the car?

Centripetal Force

- Centripetal force is the net force on an object moving in a uniform circular motion
- This force can come from...
- Friction - cars tires
- Gravity - orbiting planet or moon
$F_{c}=\frac{m v_{t}{ }^{2}}{r}$
of $2.5 \mathrm{~m} / \mathrm{s}$ and the rope is 2.1 meters long, what is the girls mass if there is a centripetal force of 88 N ?

Centripetal Force Misinterpreted

- What direction is the force acting on a car that is turning clockwise?
- How about the person in the car?

