Newton's Laws of Universal Gravitation

$$
7.2
$$

Objectives

- Explain how Newton's law of universal gravitation accounts for various phenomena, including satellite and planetary orbits, falling objects, and the tides.
- Apply Newton's law of universal gravitation to solve problems

Gravitational Force

- First off... orbiting objects (moon, planets, space shuttle, etc.) are in free fall!
- The moon
- It is falling towards Earth AND moving away at the same time
- Think of throwing a ball
- It goes forward and down
- Throw it faster and it goes farther forward and down
- Throw it fast enough and it goes forward at the same rate it goes down, never hitting the surface
0

Gravitational Force

- Gravitational Force is the mutual force of attraction between ALL objects
- This magnitude of the force depends on...
- Masses of the objects
- Distance between the objects

Gravitational Force

- Equation

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

KEY:
Fg = Gravitational Force (N)
Memorize!
$G=$ Universal Gravitational Constant (6.673 $\times 10^{-11}\left(N^{*} \mathrm{~m}^{\wedge} 2 / \mathrm{kg}^{\wedge} 2\right)$
$m=$ mass (kg)
$r=$ radius (distance) (m)

Gravitational Force

- Gravitational Forces are always equal in magnitude and opposite in direction
- Newton's $3^{\text {rd }}$ Law!
- Why does the moon orbit the Earth instead of the Earth orbiting the moon?

What will happen when these objects interact?

- Earth and apple
- You and Earth
- Red Box and a Green Box
- Red Box and a Green Box in space with nothing else around (Hypothetically)

Make sure to watch the Gravitational Force Math Help Video

Applying the Law of Gravitation

- On example of applying the law of gravitation to the "real world" is ocean tides
- Ocean Tides result from the moons gravitational attraction to the Earth
- The tides result from the difference between the gravitational force at Earth's surface and at Earth's center.

Cavendish

- Cavendish applied Newton's law of universal gravitation to find the value of G and Earth's mass.
- When two masses, the distance between them, and the gravitational force are known, Newton's law of universal gravitation can be used to find G.
- Once the value of G is known, the law can be used again to find Earth's mass.

Applying the Law of Gravitation

- Gravity is a field force
- This means there is an area around the object that exerts this force

- What is an example of another field force?

Weight Changes with Location

- Weight is a force

$$
\begin{gathered}
\text { weight }(N)=\operatorname{mass}(\mathrm{kg}) * \operatorname{gravity}\left(\frac{m}{s^{2}}\right) \\
F_{g}=m * g
\end{gathered}
$$

- Weight changes with location in respects to the center of mass

Weight Changes with Location

$$
F_{g}=m * g
$$

So, ...

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- Substitution gives us...
- (usually for g on a planet, moon, etc.)

$$
g=\frac{G m_{ \pm} m_{2}}{m_{ \pm} r^{2}} \longrightarrow g=\frac{G m_{2}}{r^{2}}
$$

Weight Changes with Location

- So... the equation tells us free-fall acceleration does NOT depend on the mass of the object!
- $g=\frac{G m_{E}}{r^{2}}{ }^{\text {Mass of Earth (or other planet) }}$
- Pretty cool!

