Motion in Space

7.3

Objectives

• **Describe** Kepler's laws of planetary motion.

• **Relate** Newton's mathematical analysis of gravitational force to the elliptical planetary orbits proposed by Kepler.

Solve problems involving orbital speed and period.

Kepler's Laws

- Kepler discovered the laws that describe the motions of every planet and satellite.
- **Kepler's first law** states that the paths of the planets are ellipses, with the Sun at one focus.

Kepler's Laws

- Kepler found that the planets move faster when they are closer to the Sun and slower when they are farther away from the Sun.
- Kepler's second law states that an imaginary line from the Sun to a planet sweeps out equal areas in equal time intervals.

So, if it takes longer, the planet is...

(closer, farther)

Kepler's 2nd Law

• Equation

$$\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$$

OR

Kepler's Laws

Kepler's third law states the square of a planet's orbital period (T²) is proportional to the cube of the average distance (r³) between the planet and the sun.

Orbital Period:
$$T^2 = \left(\frac{4\pi^2}{Gm}\right)r^3 \longrightarrow T = 2\pi \sqrt{\frac{r^3}{Gm}}$$

Orbital Speed: $v_t = \sqrt{G\frac{m}{r}}$

Planetary Info.

Page 240

Table 1Planetary Data

Planet	Mass (kg)	Mean radius (m)	Mean distance from sun (m)	Planet	Mass (kg)	Mean radius (m)	Mean distance from sun (m)
Earth	5.97×10^{24}	$6.38 imes 10^6$	1.50 × 10 ¹¹	Neptune	1.02×10^{26}	2.48 × 10 ⁷	$4.50 imes 10^{12}$
Earth's				Saturn	5.68×10^{26}	6.03×10^{7}	1.43×10^{12}
moon	7.35×10^{22}	1.74×10^{6}		Sun	1.99×10^{30}	6.96 × 10 ⁸	
Jupiter	1.90×10^{27}	7.15 × 10 ⁷	7.79 × 10 ¹¹	Uranus	8.68×10^{25}	2.56 × 10 ⁷	2.87 × 10 ¹²
Mars	6.42×10^{23}	3.40×10^{6}	2.28×10^{11}	Venus	4.87×10^{24}	6.05×10^{6}	1.08×10^{11}
Mercury	3.30×10^{23}	$2.44 imes 10^6$	5.79 × 10 ¹⁰				

Make sure to watch the Period and Speed of Orbiting Objects Math Help Video

Weight and Weightlessness

• What is apparent weightlessness?

• So, are astronauts really weightless?

• Give an example of something that is weightless.

Assignment

- Page 243
 - <u>–</u> 1-3, 5-7
- SP D