Acceleration

2.2 b

$$
\begin{gathered}
\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t \quad v_{f}=v_{i}+a t \quad \Delta x=v_{i} t+\frac{1}{2} a t^{2} \quad v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
\text { Practice Problem }
\end{gathered}
$$

A man is running in a race. The gun sounds and he takes off with an acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. How far has he traveled to get to his top speed if he reaches his top speed in 5.6 seconds?
$\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t \quad v_{f}=v_{i}+a t \quad \Delta x=v_{i} t+\frac{1}{2} a t^{2} \quad v_{f}{ }^{2}=v_{i}^{2}+2 a \Delta x$

Practice Problem

A woman is riding a bike down the street with a speed of 1.33 m / s. She starts going down a hill and accelerating. If the hill in 0.025 km long and she is accelerating at $0.3 \mathrm{~m} / \mathrm{s}^{2}$, what is her final speed?

$$
\begin{array}{cl}
\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t \quad v_{f}=v_{i}+a t \quad \Delta x=v_{i} t+\frac{1}{2} a t^{2} \quad v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
& \text { Practice Problem }
\end{array}
$$

An object has a final speed of $7.8 \mathrm{~m} / \mathrm{s}$. If this object accelerated (uniformly) for 3 seconds from an initial speed of $2.6 \mathrm{~m} / \mathrm{s}$, how far has it traveled during the 3 second time interval?

$$
\begin{gathered}
\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t \quad v_{f}=v_{i}+a t \quad \Delta x=v_{i} t+\frac{1}{2} a t^{2} \quad v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
\text { Practice Problem }
\end{gathered}
$$

An object is sitting still when all of a sudden a wind causes it to undergo an acceleration. What is the acceleration (in m / s) of an object that travels 500 m during a 1.2 minute time interval?

