\qquad Class: \qquad Date: \qquad

VELOCITY AND DISPLACEMENT WITH CONSTANT ACCELERATION PROBLEM

A barge moving with a speed of $1.00 \mathrm{~m} / \mathrm{s}$ increases speed uniformly, so that in 30.0 s it has traveled 60.2 m . What is the magnitude of the barge's acceleration?

SOLUTION

Given: $\quad v_{i}=1.00 \mathrm{~m} / \mathrm{s}$

$$
\Delta t=30.0 \mathrm{~s}
$$

$$
\Delta x=60.2 \mathrm{~m}
$$

Unknown: $\quad a=$?
Use the equation for displacement with constant uniform acceleration.

$$
\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}
$$

Rearrange the equation to solve for a.

$$
\begin{aligned}
& \frac{1}{2} a \Delta t^{2}=\Delta x-v_{i} \Delta t \\
& a=\frac{2\left(\Delta x-v_{i} \Delta t\right)}{\Delta t^{2}} \\
& a=\frac{(2)[60.2 \mathrm{~m}-(1.00 \mathrm{~m} / \mathrm{s})(30.0 \mathrm{~s})]}{(30.0 \mathrm{~s})^{2}} \\
& a=\frac{(2)(60.2 \mathrm{~m}-30.0 \mathrm{~m})}{9.00 \times 10^{2} \mathrm{~s}^{2}} \\
& a=\frac{(2)(30.2 \mathrm{~m})}{9.00 \times 10^{2} \mathrm{~s}^{2}} \\
& a=6.71 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

ADDITIONAL PRACTICE

1. The flight speed of a small bottle rocket can vary greatly, depending on how well its powder burns. Suppose a rocket is launched from rest so that it travels 12.4 m upward in 2.0 s . What is the rocket's net acceleration?
2. The shark can accelerate to a speed of $32.0 \mathrm{~km} / \mathrm{h}$ in a few seconds. Assume that it takes a shark 1.5 s to accelerate uniformly from $2.8 \mathrm{~km} / \mathrm{h}$ to 32.0 $\mathbf{k m} / \mathrm{h}$. What is the magnitude of the shark's acceleration?
3. In order for the Wright brothers' 1903 flyer to reach launch speed, it had to be accelerated uniformly along a track that was 18.3 m long. A system of pulleys and falling weights provided the acceleration. If the flyer was initially at rest and it took 2.74 s for the flyer to travel the length of the track, what was the magnitude of its acceleration?
\qquad Class: \qquad Date: \qquad
4. A certain roller coaster increases the speed of its cars as it raises them to the top of the incline. Suppose the cars move at $2.3 \mathrm{~m} / \mathrm{s}$ at the base of the incline and are moving at $46.7 \mathrm{~m} / \mathrm{s}$ at the top of the incline. What is the magnitude of the net acceleration if it is uniform acceleration and takes place in 7.0 s ?
5. A ship with an initial speed of $6.23 \mathrm{~m} / \mathrm{s}$ approaches a dock that is $\mathbf{2 5 5} \mathbf{~ m}$ away. If the ship accelerates uniformly and comes to rest in 82 s , what is its acceleration?
6. Although tigers are not the fastest of predators, they can still reach and briefly maintain a speed of $55 \mathrm{~km} / \mathrm{h}$. Assume that a tiger takes 4.1 s to reach this speed from an initial speed of $11 \mathrm{~km} / \mathrm{h}$. What is the magnitude of the tiger's acceleration, assuming it accelerates uniformly?
7. Assume that a catcher in a professional baseball game catches a ball that has been pitched with an initial velocity of $42.0 \mathrm{~m} / \mathrm{s}$ to the southeast. If the catcher uniformly brings the ball to rest in 0.0090 s through a distance of 0.020 m to the southeast, what is the ball's acceleration?
8. A crate is carried by a conveyor belt to a loading dock. The belt speed uniformly increases slightly, so that for 28.0 s the crate accelerates by $0.035 \mathrm{~m} / \mathrm{s}^{2}$. If the crate's initial speed is $0.76 \mathrm{~m} / \mathrm{s}$, what is its final speed?
9. A plane starting at rest at the south end of a runway undergoes a uniform acceleration of $1.60 \mathrm{~m} / \mathrm{s}^{2}$ to the north. At takeoff, the plane's velocity is $72.0 \mathrm{~m} / \mathrm{s}$ to the north.
a. What is the time required for takeoff?
b. How far does the plane travel along the runway?
10. A cross-country skier with an initial forward velocity of $+4.42 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at $-0.75 \mathrm{~m} / \mathrm{s}^{2}$.
a. How long does it take the skier to come to a stop?
b. What is the skier's displacement in this time interval?
