FALLING OBJECT

PROBLEM

The famous Gateway to the West Arch in St. Louis, Missouri, is about 192 m tall at its highest point. Suppose Sally, a stuntwoman, jumps off the top of the arch. If it takes Sally 6.4 s to land on the safety pad at the base of the arch, what is her average acceleration? What is her final velocity?

SOLUTION

1. DEFINE

Given: $\quad v_{i}=0 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\Delta y & =-192 \mathrm{~m} \\
\Delta t & =6.4 \mathrm{~s}
\end{aligned}
$$

Unknown: $a=$?

$$
v_{f}=?
$$

2. PLAN Choose an equation(s) or situation: Both the acceleration and the final speed are unknown. Therefore, first solve for the acceleration during the fall using the equation that requires only the known variables.

$$
\Delta y=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}
$$

Then the equation for v_{f} that involves acceleration can be used to solve for v_{f}.

$$
v_{f}=v_{i}+a \Delta t
$$

Rearrange the equation(s) to isolate the unknown(s):

$$
\begin{aligned}
& a=\frac{2\left(\Delta y-v_{i} \Delta t\right)}{\Delta t^{2}} \\
& v_{f}=v_{i}+a \Delta t
\end{aligned}
$$

3. CALCULATE Substitute the values into the equation(s) and solve:

$$
\begin{aligned}
a & =\frac{(2)\left[(-192 \mathrm{~m})-\left(0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(6.4 \mathrm{~s})\right]}{(6.4 \mathrm{~s})^{2}}=-9.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
v_{f} & =0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(6.4 \mathrm{~s})=-6.0 \times 10^{1} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

4. EVALUATE Sally's downward acceleration is less than the free-fall acceleration at Earth's surface $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$. This indicates that air resistance reduces her downward acceleration by $0.4 \mathrm{~m} / \mathrm{s}^{2}$. Sally's final speed, $60 \mathrm{~m} / \mathrm{s}$, is such that, if she could fall at this speed at the beginning of her jump with no acceleration, she would travel a distance equal to the arch's height in just a little more than 3 s .

ADDITIONAL PRACTICE

1. The John Hancock Center in Chicago is the tallest building in the United States in which there are residential apartments. The Hancock Center is 343 m tall. Suppose a resident accidentally causes a chunk of ice to fall from the roof. What would be the velocity of the ice as it hits the ground? Neglect air resistance.
2. Brian Berg of Iowa built a house of cards 4.88 m tall. Suppose Berg throws a ball from ground level with a velocity of $9.98 \mathrm{~m} / \mathrm{s}$ straight up. What is the velocity of the ball as it first passes the top of the card house?
3. The Sears Tower in Chicago is $443 \mathbf{m}$ tall. Suppose a book is dropped from the top of the building. What would be the book's velocity at a point 221 m above the ground? Neglect air resistance.
4. The tallest roller coaster in the world is the Desperado in Nevada. It has a lift height of 64 m . If an archer shoots an arrow straight up in the air and the arrow passes the top of the roller coaster 3.0 s after the arrow is shot, what is the initial speed of the arrow?
5. The tallest Sequoia sempervirens tree in California's Redwood National Park is $\mathbf{1 1 1} \mathbf{~ m}$ tall. Suppose an object is thrown downward from the top of that tree with a certain initial velocity. If the object reaches the ground in 3.80 s , what is the object's initial velocity?
6. The Westin Stamford Hotel in Detroit is 228 m tall. If a worker on the roof drops a sandwich, how long does it take the sandwich to hit the ground, assuming there is no air resistance? How would air resistance affect the answer?
7. A man named Bungkas climbed a palm tree in 1970 and built himself a nest there. In 1994 he was still up there, and he had not left the tree for 24 years. Suppose Bungkas asks a villager for a newspaper, which is thrown to him straight up with an initial speed of $12.0 \mathrm{~m} / \mathrm{s}$. When Bungkas catches the newspaper from his nest, the newspaper's velocity is $3.0 \mathrm{~m} / \mathrm{s}$, directed upward. From this information, find the height at which the nest was built. Assume that the newspaper is thrown from a height of $\mathbf{1 . 5 0} \mathbf{~ m}$ above the ground.
8. Rob Colley set a record in "pole-sitting" when he spent 42 days in a barrel at the top of a flagpole with a height of 43 m . Suppose a friend wanting to deliver an ice-cream sandwich to Colley throws the ice cream straight up with just enough speed to reach the barrel. How long does it take the ice-cream sandwich to reach the barrel?
9. A common flea is recorded to have jumped as high as 21 cm . Assuming that the jump is entirely in the vertical direction and that air resistance is insignificant, calculate the time it takes the flea to reach a height of $\mathbf{7 . 0}$ cm.

Harder, so THINK!

