Name: $\qquad$ Class: $\qquad$ Date: $\qquad$
Two-Dimensional Motion and Vectors
Problem C
ADDING VECTORS ALGEBRAICALLY PROBLEM
The record for the longest nonstop closed-circuit flight by a model airplane was set in Italy in 1986. The plane flew a total distance of 1239 km . Assume that at some point the plane traveled $1.25 \times 10^{3} \mathrm{~m}$ to the east, then $1.25 \times 10^{3} \mathrm{~m}$ to the north, and finally $1.00 \times 10^{3} \mathrm{~m}$ to the southeast. Calculate the total displacement for this portion of the flight.

## SOLUTION

## 1. DEFINE

Given:
Unknown:

$$
\begin{array}{lll}
d_{l}=1.25 \times 10^{3} \mathrm{~m} & d_{2}=1.25 \times 10^{3} \mathrm{~m} & d_{3}=1.00 \times 10^{3} \mathrm{~m} \\
\Delta x_{\text {tot }}=? \Delta y_{t o t}=? & d=? & \theta=?
\end{array}
$$

Diagram:

2. PLAN Choose the equation(s) or situation: Orient the displacements with respect to the $x$-axis of the coordinate system.

$$
\theta_{1}=0.00^{\circ} \quad \theta_{2}=90.0^{\circ} \quad \theta_{3}=-45.0^{\circ}
$$

Use this information to calculate the components of the total displacement along the $x$-axis and the $y$-axis.

$$
\begin{aligned}
\Delta x_{\text {tot }} & =\Delta x_{1}+\Delta x_{2}+\Delta x_{3} \\
\quad & =d_{1}\left(\cos \theta_{1}\right)+d_{2}\left(\cos \theta_{2}\right)+d_{3}\left(\cos \theta_{3}\right) \\
\Delta y_{\text {tot }} & =\Delta y_{1}+\Delta y_{2}+\Delta y_{3} \\
& =d_{l}\left(\sin \theta_{l}\right)+d_{2}\left(\sin \theta_{2}\right)+d_{3}\left(\sin \theta_{3}\right)
\end{aligned}
$$

Use the components of the total displacement, the Pythagorean theorem, and the tangent function to calculate the total displacement.

$$
d=\sqrt{\left(\Delta x_{t o t}\right)^{2}+\left(\Delta y_{t o t}\right)^{2}} \quad \theta=\tan ^{-1}\left(\frac{\Delta y_{t o t}}{\Delta x_{t o t}}\right)
$$

3. CALCULATE Substitute the values into the equation(s) and solve:

$$
\begin{aligned}
\Delta x_{\text {tot }}= & \left(1.25 \times 10^{3} \mathrm{~m}\right)\left(\cos 0^{\circ}\right)+\left(1.25 \times 10^{3} \mathrm{~m}\right)\left(\cos 90.0^{\circ}\right) \\
& +\left(1.00 \times 10^{3} \mathrm{~m}\right)\left[\cos \left(-45.0^{\circ}\right)\right] \\
= & 1.25 \times 10^{3} \mathrm{~m}+7.07 \times 10^{2} \mathrm{~m} \\
= & 1.96 \times 10^{3} \mathrm{~m} \\
\Delta y_{\text {tot }}= & \left(1.25 \times 10^{3} \mathrm{~m}\right)\left(\sin 0^{\circ}\right)+\left(1.25 \times 10^{3} \mathrm{~m}\right)\left(\sin 90.0^{\circ}\right) \\
& +\left(1.00 \times 10^{3} \mathrm{~m}\right)\left[\sin \left(-45.0^{\circ}\right)\right] \\
= & 1.25 \times 10^{3} \mathrm{~m}+7.07 \times 10^{2} \mathrm{~m} \\
= & 0.543 \times 10^{3} \mathrm{~m}
\end{aligned}
$$

$\qquad$ Date: $\qquad$

$$
\begin{aligned}
& d=\sqrt{\left(1.96 \times 10^{3} \mathrm{~m}\right)^{2}+\left(0.543 \times 10^{3} \mathrm{~m}\right)^{2}} \\
& d=\sqrt{3.84 \times 10^{6} \mathrm{~m}^{2}+2.95 \times 10^{5} \mathrm{~m}^{2}}=\sqrt{4.14 \times 10^{6} \mathrm{~m}^{2}} \\
& d=2.03 \times 10^{3} \mathrm{~m} \\
& \theta=\tan ^{-1}\left(\frac{0.543 \times 10^{3} \mathrm{~m}}{1.96 \times 10^{3} \mathrm{~m}}\right) \\
& \theta=15.5^{\circ} \text { north of east }
\end{aligned}
$$

## 4. EVALUATE

The magnitude of the total displacement is slightly larger than that of the total displacement in the eastern direction alone.

## ADDITIONAL PRACTICE

1. For six weeks in 1992, Akira Matsushima, from Japan, rode a unicycle more than 3000 mi across the United States. Suppose Matsushima is riding through a city. If he travels 250.0 m east on one street, then turns counterclockwise through a $120.0^{\circ}$ angle and proceeds 125.0 m northwest along a diagonal street, what is his resultant displacement?

## 2. In 1976, the Lockheed SR-71A Blackbird set the record speed for any

 airplane: $3.53 \times 10^{\mathbf{3}} \mathrm{km} / \mathrm{h}$. Suppose you observe this plane ascending at this speed. For 20.0 s , it flies at an angle of $\mathbf{1 5 . 0 ^ { \circ }}$ above the horizontal, then for another 10.0 s its angle of ascent is increased to $35.0^{\circ}$. Calculate the plane's total gain in altitude, its total horizontal displacement, and its resultant displacement.3. Magnor Mydland of Norway constructed a motorcycle with a wheelbase of about 12 cm . The tiny vehicle could be ridden at a maximum speed of $11.6 \mathrm{~km} / \mathrm{h}$. Suppose this tiny motorcycle travels in the directions $d_{1}$ and $d_{2}$, where $d_{1}$ is $30^{\circ}$ with the horizontal (upward and right) and $d_{2}$ is $45^{\circ}$ with the vertical (down and to the right). Calculate $d_{1}$ and $d_{2}$, and determine how long it takes the motorcycle to reach a net displacement of $2.0 \times 10^{2}$ to the right.
4. The fastest propeller-driven aircraft is the Russian TU-95/142, which can reach a maximum speed of $925 \mathrm{~km} / \mathrm{h}$. For this speed, calculate the plane's resultant displacement if it travels east for 1.50 h , then turns $135^{\circ}$ north-west and travels for 2.00 h .
5. In 1952, the ocean liner United States crossed the Atlantic Ocean in less than four days, setting the world record for commercial ocean-going vessels. The average speed for the trip was $57.2 \mathrm{~km} / \mathrm{h}$. Suppose the ship moves in a straight line eastward at this speed for 2.50 h . Then, due to a strong local current, the ship's course begins to deviate northward by $30.0^{\circ}$, and the ship follows the new course at the same speed for another 1.50 h . Find the resultant displacement for the 4.00 h period.
