\qquad Class: \qquad Date: \qquad

Problem E

OVERCOMING FRICTION

PROBLEM

A bicyclist riding in the rain suddenly applies the brakes and slides to a stop. If the acceleration is $-9.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the coefficient of kinetic friction between the bicycle's rubber tires and the wet concrete?

SOLUTION

1. DEFINE

Given:

$$
\begin{aligned}
& a_{\text {net }}=-9.5 \mathrm{~m} / \mathrm{s}^{2} \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Unknown: $\quad \mu_{k}=$?
2. PLAN Choose the equation(s) or situation: Use Newton's second law to describe the forces acting on the bicycle.

$$
F_{n e t}=m a_{n e t}=-F_{k}
$$

Use the definition of frictional force to express F_{k} in terms of the coefficient of friction.

$$
F_{k}=\mu_{k} F_{n}=\mu_{k}(m g)
$$

Rearrange the equation(s) to isolate the unknown(s):

$$
\begin{aligned}
& m a_{\text {net }}=-\mu_{k} m g \\
& \mu_{k}=-\frac{a_{n e t}}{g}
\end{aligned}
$$

3. CALCULATE Substitute the values into the equation(s) and solve:

$$
\begin{aligned}
& \mu_{k}=\frac{-\left(-9.5 \mathrm{~m} / \mathrm{s}^{2}\right)}{9.81 \mathrm{~m} / \mathrm{s}^{2}} \\
& \mu_{k}=0.97
\end{aligned}
$$

4. CALCULATE The coefficient of static friction for rubber and most surfaces is high. This is indicated by the value for rubber and wet concrete. Even under these conditions, μ_{s} is nearly 1 .

ADDITIONAL PRACTICE

1. Blocks of ice are slid down a metal chute with an incline of 12.0° above the horizontal. The blocks undergo a constant acceleration of $1.22 \mathrm{~m} / \mathrm{s}^{2}$. What is the coefficient of kinetic friction between the ice and the chute?
2. A force of 1760 N is required to start moving a bundle of wooden planks up a ramp. If the ramp's incline is 17° and the mass of the planks is 266 $\mathbf{k g}$, what is the coefficient of static friction between the planks and the ramp?
\qquad Class: \qquad Date: \qquad
3. A bundle of bricks is pulled up a ramp to a construction site. The bundle has a mass of $5.1 \times 10^{2} \mathrm{~kg}$, and the incline of the ramp is 14°. If the minimum force needed to move the bricks up the ramp is $4.1 \times 10^{3} \mathrm{~N}$, what is the coefficient of static friction between the bricks and the ramp?
4. A force of 5.00 N to the left causes a 1.35 kg book to have a net acceleration of $0.76 \mathrm{~m} / \mathrm{s}^{2}$ to the left. What is the frictional force acting on the book?
5. A jar is slid horizontally across a smooth table. If the coefficient of kinetic friction between the jar and the table is 0.20 , what is the magnitude of the jar's acceleration?
6. A skier is pulled by an applied force of $2.50 \times 10^{2} \mathrm{~N}$ up a slope with an incline of 18.0°. If the combined mass of the skier and skis is 65.0 kg and the net acceleration uphill is $0.44 \mathrm{~m} / \mathrm{s}^{2}$, what is the frictional force between the skis and the snow?
7. If the skier in problem 6 skis down the same hill, what will the skier's acceleration be?
8. A crate is pushed across a level floor by a force of $3.00 \times 10^{2} \mathrm{~N}$ exerted at an angle of 20.0° below the horizontal. The coefficient of kinetic friction between the crate and floor is 0.250 . If the crate's velocity is constant, what is the magnitude of the normal force exerted on the crate by the floor? What is the mass of the crate?
9. A horse must exert a force of 590 N just to keep a sleigh from sliding down a snowcovered hill. The component of the sleigh's weight down the slope of the hill is 950 N , and the coefficient of static friction between the sleigh's runners and the snow is 0.095 . What is the normal force exerted by the ground on the sleigh? What is the sleigh's mass if the slope of the hill is 14.0° ?
10. A freight elevator accelerates upward at $1.20 \mathrm{~m} / \mathrm{s}^{2}$. A crate is lifted inside the elevator. In order to move the crate along the floor of the elevator, a worker must exert a force of $1.50 \times 10^{3} \mathrm{~N}$ at an angle of 10.0° below the horizontal on the upper corner of the crate. If the coefficient of static friction is 0.650 , what is the normal force that the elevator floor exerts on the crate? What is the crate's mass?
