\qquad Class: \qquad Date: \qquad
Momentum and Collisions

Problem A

MOMENTUM

PROBLEM

The world's most massive train ran in South Africa in 1989. Over 7 km long, the train traveled 861.0 km in 22.67 h . Imagine that the distance was traveled in a straight line north. If the train's average momentum was $7.32 \times 10^{8} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ to the north, what was its mass?

SOLUTION

Given:

$$
\begin{aligned}
& \Delta \mathbf{x}=861.0 \mathrm{~km} \text { to the north } \\
& \Delta t=22.67 \mathrm{~h} \\
& \mathbf{p}_{\text {avg }}=7.32 \times 10^{8} \frac{\mathrm{~kg} \bullet \mathrm{~m}}{\mathrm{~s}} \text { to the nortt }
\end{aligned}
$$

Unknown: $\quad \mathbf{v}_{\text {avg }}=$? $\quad m=$?
Use the definition of average velocity to calculate $\mathbf{v}_{\text {avg }}$, and then substitute this value for velocity in the definition of momentum to solve for mass.

$$
\begin{aligned}
& \mathbf{v}_{\text {avg }}=\frac{\Delta \mathbf{x}}{\Delta t}=\frac{\left(861.0 \times 10^{3} \mathrm{~m}\right)}{(22.67 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})}=10.55 \frac{\mathrm{~m}}{\mathrm{~s}} \text { to the nortt } \\
& p_{\text {avg }}=m v_{\text {avg }} \\
& m=\frac{p_{\text {avg }}}{v_{\text {avg }}}=\frac{\left(7.32 \times 10^{8} \frac{\mathrm{~kg} \bullet \mathrm{~m}}{\mathrm{~s}}\right)}{\left(10.55 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}=6.94 \times 10^{7} \mathrm{~kg}
\end{aligned}
$$

ADDITIONAL PRACTICE

1. In 1987, Marisa Canofoglia, of Italy, roller-skated at a record-setting speed
of $40.3 \mathrm{~km} / \mathrm{h}$. If the magnitude of Canofoglia's momentum was $6.60 \times 10^{2} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$, what was her mass?
2. In 1976, a 53 kg helicopter was built in Denmark. Suppose this helicopter flew east with a speed of $60.0 \mathrm{~m} / \mathrm{s}$ and the total momentum of the helicopter and pilot was $7.20 \times 10^{\mathbf{3}} \mathbf{~ k g \bullet m} / \mathrm{s}$ to the east. What was the mass of the pilot?
3. One of the smallest planes ever flown was the Bumble Bee II, which had a mass of $1.80 \times 10^{2} \mathrm{~kg}$. If the pilot's mass was $7.0 \times 10^{1} \mathrm{~kg}$, what was the velocity of both plane and pilot if their momentum was $2.08 \times 10^{4} \mathbf{~ k g o m} / \mathrm{s}$ to the west?
\qquad Class: \qquad Date: \qquad
4. The first human-made satellite, Sputnik I, had a mass of 83.6 kg and a momentum with a magnitude of $6.63 \times 10^{5} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$. What was the satellite's speed?
5. Among the largest passenger ships currently in use, the Norway has been in service the longest. The Norway is more than 300 m long, has a mass of6.9 $\times 10^{7} \mathrm{~kg}$, and can reach a top cruising speed of $33 \mathrm{~km} / \mathrm{h}$. Calculate the magnitude of the ship's momentum.
6. In 1994, a tower 22.13 m tall was built of Lego ${ }^{\circledR}$ blocks. Suppose a block with a mass of 2.00 g is dropped from the top of this tower. Neglecting air resistance, calculate the block's momentum at the instant the block hits the ground. (Hint: $\mathrm{PE}=\mathrm{KE}$, Solve for v_{f})
