\qquad Class: \qquad Date: \qquad
Momentum and Collisions
Problem G

ELASTIC COLLISIONS

PROBLEM

American juggler Bruce Sarafian juggled 11 identical balls at one time in 1992.
Each ball had a mass of 0.20 kg . Suppose two balls have an elastic head-on collision during the act. The first ball moves away from the collision with a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ to the right, and the second ball moves away with a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ to the left. If the first ball's velocity before the collision is $4.0 \mathrm{~m} / \mathrm{s}$ to the left, what is the velocity of the second ball before the collision?

SOLUTION

1. DEFINE

Given:

$$
m_{1}=m_{2}=0.20 \mathrm{~kg}
$$

$$
\mathbf{v}_{1, \mathrm{i}}=\text { initial velocity of ball } 1=4.0 \mathrm{~m} / \mathrm{s} \text { to the left }
$$

$$
=-4.0 \mathrm{~m} / \mathrm{s} \text { to the right }
$$

$$
\mathbf{v}_{\mathbf{1 , f}}=\text { final velocity of ball } 1=3.0 \mathrm{~m} / \mathrm{s} \text { to the right }
$$

$$
\mathbf{v}_{2, \mathrm{f}}=\text { final velocity of ball } 2=4.0 \mathrm{~m} / \mathrm{s} \text { to the left }
$$

$$
=-4.0 \mathrm{~m} / \mathrm{s} \text { to the right }
$$

Unknown: $\quad \mathbf{v}_{2, \mathrm{I}}=$ initial velocity of ball $2=$?
2. PLAN Choose the equation(s) or situation: Use the equation for the conservation of momentum to determine the initial velocity of ball 2 . Because both balls have identical masses, the mass terms cancel.

$$
\begin{aligned}
& m_{l} \mathbf{v}_{\mathbf{1 , i}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathrm{i}}=m_{l} \mathbf{v}_{\mathbf{1 , f}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathbf{f}} \\
& \mathbf{v}_{\mathbf{1 , i}}+\mathbf{v}_{\mathbf{2 , i}}=\mathbf{v}_{\mathbf{1 , f}}+\mathbf{v}_{\mathbf{2}, \mathbf{f}}
\end{aligned}
$$

Rearrange the equation(s) to isolate the unknown(s):

$$
\mathbf{v}_{2, \mathrm{i}}=\mathbf{v}_{\mathbf{1 , f}}+\mathbf{v}_{2, \mathrm{f}}-\mathbf{v}_{\mathbf{1 , i}}
$$

3. CALCULATE Substitute the values into the equation(s) and solve:

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{2}, \mathbf{i}}=3.0 \mathrm{~m} / \mathrm{s}-4.0 \mathrm{~m} / \mathrm{s}-(-4.0 \mathrm{~m} / \mathrm{s}) \\
& \mathbf{v}_{2, \mathrm{i}}=3.0 \mathrm{~m} / \mathrm{s} \text { to the right }
\end{aligned}
$$

4. EVALUATE Confirm your answer by making sure that kinetic energy is

 also conserved.$$
\begin{aligned}
& \frac{1}{2} m_{l} v_{l, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}=\frac{1}{2} m_{l} v_{l, f}^{2}+\frac{1}{2} m_{2} v_{2, f}^{2} \\
& v_{l, i}^{2}+v_{2, i}^{2}=v_{l, f}^{2}+v_{l, f}^{2} \\
& (-4.0 \mathrm{~m} / \mathrm{s})^{2}+(3.0 \mathrm{~m} / \mathrm{s})^{2}=(3.0 \mathrm{~m} / \mathrm{s})^{2}+(-4.0 \mathrm{~m} / \mathrm{s})^{2} \\
& 16 \mathrm{~m}^{2} / \mathrm{s}^{2}+9.0 \mathrm{~m}^{2} / \mathrm{s}^{2}=9.0 \mathrm{~m}^{2} / \mathrm{s}^{2}+16 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& 25 \mathrm{~m}^{2} / \mathrm{s}^{2}=25 \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

ADDITIONAL PRACTICE

1. The moon's orbital speed around Earth is $3.680 \times 10^{3} \mathrm{~km} / \mathrm{h}$. Suppose the moon suffers a perfectly elastic collision with a comet whose mass is 50.0 percent that of the moon. (A partially inelastic collision would be a much more
\qquad Date: \qquad
realistic event.) After the collision, the moon moves with a speed of $-4.40 \times 10^{2} \mathrm{~km} / \mathrm{h}$, while the comet moves away from the moon at $-5.740 \times 10^{3} \mathrm{~km} / \mathrm{h}$. What is the comet's speed before the collision?

2. The largest beet root on record had a mass of 18.40 kg . The largest

 cabbage on record had a mass of 56.20 kg . Imagine these two vegetables traveling in opposite directions. The cabbage, which travels $5.000 \mathrm{~m} / \mathrm{s}$ to the left, collides with the beet root. After the collision, the cabbage has a velocity of $6.600 \times 10^{-2} \mathbf{~ m} / \mathrm{s}$ to the right, and the beet root has a velocity of $10.07 \mathrm{~m} / \mathrm{s}$ to the left. What is the beet root's velocity before the perfectly elastic collision?3. The first astronaut to walk in outer space without being tethered to a spaceship was Capt. Bruce McCandless. In 1984, he used a jet backpack, which cost about $\$ 15$ million to design, to move freely about the exterior of the space shuttle Challenger. Imagine two astronauts working in outer space. Suppose they have equal masses and accidentally run into each other. The first astronaut moves $5.0 \mathrm{~m} / \mathrm{s}$ to the right before the collision and $2.0 \mathrm{~m} / \mathrm{s}$ to the left afterwards. If the second astronaut moves $5.0 \mathrm{~m} / \mathrm{s}$ to the right after the perfectly elastic collision, what was the second astronaut's initial velocity? Is the KE conserved?
4. Speeds as high as $273 \mathrm{~km} / \mathrm{h}$ have been recorded for golf balls. Suppose a golf ball whose mass is 45.0 g is moving to the right at $273 \mathrm{~km} / \mathrm{h}$ and strikes another ball that is at rest. If after the perfectly elastic collision the golf ball moves $91 \mathrm{~km} / \mathrm{h}$ to the left and the other ball moves $182 \mathrm{~km} / \mathrm{h}$ to the right, what is the mass of the second ball?
5. Jana Novotna of what is now the Czech Republic has the strongest serve among her fellow tennis players. In 1993, she sent the ball flying with a speed of $185 \mathrm{~km} / \mathrm{h}$. Suppose a tennis ball moving to the right at this speed hits a moveable target of unknown mass. After the one-dimensional, perfectly elastic collision, the tennis ball bounces to the left with a speed of $80.0 \mathrm{~km} / \mathrm{h}$. If the tennis ball's mass is $5.70 \times 10^{-2} \mathrm{~kg}$, what is the target's mass? (Hint: Use the conservation of kinetic energy to solve for the second unknown quantity.)
6. Recall the two colliding snow trains in item 5 of the previous section. Suppose now that the collision between the two trains is perfectly elastic instead of inelastic. The train with a mass of $4.00 \times 10^{5} \mathrm{~kg}$ and a velocity of $32.0 \mathrm{~km} / \mathrm{h}$ to the right is struck from behind by a second train with a mass of $1.60 \times 10^{5} \mathrm{~kg}$ and a velocity of $36.0 \mathrm{~km} / \mathrm{h}$ to the right. If the first train's velocity increases to $35.5 \mathrm{~km} / \mathrm{h}$ to the right, what is the final velocity of the second train after the collision?
7. A dump truck used in Canada has a mass of $5.50 \times 10^{5} \mathrm{~kg}$ when loaded and $2.30 \times 10^{5} \mathrm{~kg}$ when empty. Suppose two such trucks, one loaded and one empty, crash into each other at a monster truck show. The trucks are supplied with special bumpers that make a collision almost perfectly elastic. If the trucks hit each other at equal speeds of $5.00 \mathrm{~m} / \mathrm{s}$ and the less massive truck recoils to the right with a speed of $9.10 \mathrm{~m} / \mathrm{s}$, what is the velocity of the full truck after the collision?
