\qquad Class: \qquad Date: \qquad
Circular Motion and Gravitation

Problem B

CENTRIPETAL FORCE

PROBLEM
The royal antelope of western Africa has an average mass of only 3.2 kg . Suppose this antelope runs in a circle with a radius of 30.0 m . If a force of 8.8 N maintains this circular motion, what is the antelope's tangential speed?

SOLUTION

$\begin{array}{ll}\text { Given: } & m=3.2 \mathrm{~kg} \\ & r=30.0 \mathrm{~m} \\ & F_{c}=8.8 \mathrm{~N} \\ \text { Unknown: } & v_{t}=?\end{array}$
Use the equation for centripetal force, and rearrange it to solve for tangential speed.

$$
\begin{aligned}
& F_{c}=\frac{m v_{t}^{2}}{r} \\
& v_{t}=\sqrt{\frac{F_{c} r}{m}}=\sqrt{\frac{(8.8 \mathrm{~N})(30.0 \mathrm{~m})}{3.2 \mathrm{~kg}}}=\sqrt{82 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}} \\
& v_{t}=9.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

ADDITIONAL PRACTICE

1. Gregg Reid of Atlanta, Georgia, built a motorcycle that is over 4.5 m long and has a mass of 235 kg . The force that holds Reid and his motorcycle in a circular path with a radius of 25.0 m is 1850 N . What is Reid's tangential speed? Assume Reid's mass is 72 kg .
2. With an average mass of only 30.0 g , the mouse lemur of Madagascar is $\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{C}}+\mathrm{F}^{\text {the smallest primate on Earth. Suppose this lemur swings on a light vine }}$ with a length of 2.4 m , so that the tension in the vine at the bottom point of the swing is 0.393 N . What is the lemur's tangential speed at that point?
3. In 1994, Mata Jagdamba of India had very long hair. It was 4.23 m long. Suppose Mata conducted experiments with her hair. First, she determined that one hair strand could support a mass of 25 g . She then attached a smaller mass to the same hair strand and swung it in the horizontal plane. If the strand broke when the tangential speed of the mass reached $8.1 \mathrm{~m} / \mathrm{s}$, how large was the mass?
4. Pat Kinch used a racing cycle to travel $75.57 \mathrm{~km} / \mathrm{h}$. Suppose Kinch moved at this speed around a circular track. If the combined mass of Kinch and the cycle was 92.0 kg and the average centripetal force was 12.8 N , what was the radius of the track?
\qquad Class: \qquad Date: \qquad
5. In 1992, a team of 12 athletes from Great Britain and Canada rappelled 446 m down the CN Tower in Toronto, Canada. Suppose an athlete with a mass of 75.0 kg , having reached the ground, took a joyful swing on the 446 m -long rope. If the speed of the athlete at the bottom point of the swing was $12 \mathrm{~m} / \mathrm{s}$, what was the centripetal force? What was the tension in the rope? Neglect the rope's mass.
