\qquad Class: \qquad Date: \qquad
Circular Motion and Gravitation

Problem C

GRAVITATIONAL FORCE
 PROBLEM

The sun has a mass of $2.0 \times 10^{30} \mathrm{~kg}$ and a radius of $7.0 \times 10^{5} \mathrm{~km}$. What mass must be located at the sun's surface for a gravitational force of 470 N to exist between the mass and the sun?

SOLUTION

Given:

$$
\begin{aligned}
& m_{l}=2.0 \times 10^{30} \mathrm{~kg} \\
& r=7.0 \times 10^{5} \mathrm{~km}=7.0 \times 10^{8} \mathrm{~m} \\
& G=6.673 \times 10^{-11} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& F_{g}=470 \mathrm{~N}
\end{aligned}
$$

Unknown: $\quad m_{2}=$?
Use Newton's universal law of gravitation, and rearrange it to solve for the second mass.

$$
\begin{aligned}
& F_{g}=G \frac{m_{l} m_{2}}{r^{2}} \\
& m_{2}=\frac{F_{g} r^{2}}{G m_{l}}=\frac{(470 \mathrm{~N})\left(7.0 \times 10^{8} \mathrm{~m}\right)^{2}}{\left(6.673 \times 10^{-11} \frac{\mathrm{~N} \bullet \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(2.0 \times 10^{30} \mathrm{~kg}\right)} \\
& m_{2}=1.7 \mathrm{~kg}
\end{aligned}
$$

ADDITIONAL PRACTICE

1. Deimos, a satellite of Mars, has an average radius of 6.3 km . If the gravitational force between Deimos and a 3.0 kg rock at its surface is $2.5 \times 10^{-2} \mathrm{~N}$ what is the mass of Deimos?
2. A $3.08 \times 10^{4} \mathbf{~ k g}$ meteorite is on exhibit in New York City. Suppose this meteorite and another meteorite are separated by $1.27 \times 10^{7} \mathrm{~m}$ (a distance equal to Earth's average diameter). If the gravitational force between them is $\mathbf{2 . 8 8} \times \mathbf{1 0}^{\mathbf{- 1 6}} \mathbf{N}$, what is the mass of the second meteorite?
3. In 1989, a cake with a mass of $5.81 \times 10^{4} \mathrm{~kg}$ was baked in Alabama. Suppose a cook stood 25.0 m from the cake. The gravitational force exerted between the cook and the cake was $5.0 \times 10^{-7} \mathrm{~N}$. What was the cook's mass?
4. The largest diamond ever found has a mass of 621 g . If the force of gravitational attraction between this diamond and a person with a mass of 65.0 kg is $1.0 \times 10^{-12} \mathrm{~N}$, what is the distance between them?
\qquad Class: \qquad Date: \qquad
5. The passenger liners Carnival Destiny and Grand Princess, built recently, have a mass of about $1.0 \times 10^{8} \mathrm{~kg}$ each. How far apart must these two ships be to exert a gravitational attraction of $1.0 \times 10^{-3} \mathrm{~N}$ on each other?
6. In 1874, a swarm of locusts descended on Nebraska. The swarm's mass was estimated to be $25 \times 10^{9} \mathrm{~kg}$. If this swarm were split in half and the halves separated by $1.0 \times 10^{3} \mathbf{~ k m}$, what would the magnitude of the gravitational force between the halves be?
7. Jupiter, the largest planet in the solar system, has a mass 318 times that of Earth and a volume that is 1323 times greater than Earth's. Calculate the magnitude of the gravitational force exerted on a 50.0 kg mass on Jupiter's surface.
