Chapter 3 Worksheet

Name:	
Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition the book	from
Scalar	
Vector	
Resultant	
Components of a Vector	
Projectile Motion	
Relative Motion	

Additional Notes:

Section 3.1

- 1. What is the difference between a scalar and a vector?
- 2. Indicate is the following is an example of a scalar (S) or vector (V)

45 m/s	0.5 m/s ² E	Number of ppl on a plane				
6.8 km/h N	200 mph	Displacement for a trip				

- 3. You walk 450 meters north and turn around and walk 385 m south. What is your resultant?
- 4. Using the following vectors, display (and then explain) why you can add vectors in any order.

<u>Vectors</u>	
2 blocks N	
4 blocks E	
1 block N	
2 blocks W	
1 Block N	

Explanation:

		1 1				
		ii				
_				-		
	i	i i				
		1 1				
				-		
				-		
			11		1	

Use this diagram to answer questions 5 - 7

- 5. Which vectors have the same magnitude?
- 6. Which vectors have the same direction?
- 7. Which arrows, if any, represent the same vector?
- 8. In the space provided, construct and label a diagram that shows the vector sum $2\mathbf{A} + \mathbf{B}$. Construct and label a second diagram that shows $\mathbf{B} + 2\mathbf{A}$. Also, construct and label a diagram that shows the vector difference $\mathbf{A} - (\mathbf{B}/2)$. Construct and label a second diagram that shows ($\mathbf{B}/2$) – \mathbf{A} .

Section 3.2

One of the holes on a golf course lies due east of the tee. A novice golfer flubs his tee shot so that the ball lands only 64 m directly northeast of the tee. He then slices the ball 30° south of east so that the ball lands in a sand trap 127 m away. Frustrated, the golfer then blasts the ball out of the sand trap, and the ball lands at a point 73 m away at an angle 27° north of east. At this point, the ball is on the putting green and 14.89 m due north of the hole. To his amazement, the golfer then sinks the ball with a single shot.

1. In the space provided, choose a scale, then draw a sketch of the displacement for each shot the golfer made. Label the magnitude of each vector and the angle of each vector relative to the horizontal axis.

North																
												_				
_				_	_					_	_					_
_	_		_	-	-	_	-	_	_	_	_	_	_	_	_	_
_			_			-	-		_		-	-	-			-
Tee				-	-	-	-			-		-		>	Eas	t -
				-	-	-	1					_				-

2. Use algebraic formulas to find the *x* and *y* components of each displacement vector.

Shot 1 x component _____ y component _____

Shot 2 x component _____ y component _____

Shot 3 x component _____ y component _____

Shot 4 x component _____ y component _____

3. Find the total displacement (to the nearest meter) the golf ball traveled from the tee to the hole. Assume the golf course is flat. (Hint: Which component of each displacement vector contributes to the total displacement of the ball between the tee and the hole?)

a.

Section 3.3

- 1. Give an example of 3 projectiles. (Be specific i.e. are they moving?)
 - _____ b. _____ С.
- 2. Explain (or draw) the difference between projectile motion with and without air resistance.

3. Assuming there is no air resistance and both balls are thrown/dropped at the same time and from the same distance from the ground; which ball hits the ground first, a ball dropped or a ball thrown perfectly horizontal at 15 m/s? Explain.

4. A car drives off a cliff with an initial horizontal speed of 80 km/h. If there is no air resistance, what happens to the horizontal speed as the car drops? If there IS air resistance, does this fact change your answer? Explain.

- 5. For the following questions be specific with your answer. I do not want it goes up or down. I want "it is double, triple, be $\frac{1}{2}$, etc.)
 - a. What happens to the range of a projectile if you double the initial speed?
 - b. What happens to the range of a projectile if the gravity is 2 times larger?
 - c. What happens to the hang time of a projectile if you double the initial speed?

6. Write down the equations for 2-dimentional motion: (with substitutions?)

- 7. A downed pilot fires a flare from a flare gun. The flare has an initial speed of 250 m/s and is fired at an angle of 35° to the ground.
 - a. How long does it take for the flare to reach its maximum altitude?

b. How high does it go?

c. How far does it go?

After a snowstorm, a boy and a girl decide to have a snowball fight. The girl uses a large slingshot to shoot snowballs at the boy. Assume that the girl fires each snowball at an angle θ from the ground and that the snowballs travel with an initial velocity of v_0 .

- 8. In terms of the initial velocity, v_0 , and the launch angle, θ , for what amount of time, Δt , will a snowball travel before it reaches its maximum height above the ground? (Hint: Recall that $v_f = 0$ when an object reaches its maximum height.)
- 9. What is the maximum height, *h*, above the ground that a snowball reaches after it has been launched?

10. If the initial velocity, v_0 , equals 50.00 m/s, find the maximum height and range for each of the launch angles listed in the table below.

Launch angle	Maximum height (m)
15°	
30°	
45°	
60°	
75°	

Section 3.4

The water current in a river moves relative to the land with a velocity v_{WL} , and a boat is traveling on the river relative to the current with a velocity v_{BW} .

- 1. How is the velocity of the boat relative to the land (v_{BL}) related to v_{WL} and v_{BW} ?
- 2. Suppose that both the boat and the water current move in the same direction and that the boat is moving twice as fast as the current. Draw a vector diagram to determine the velocity of the boat relative to the land, v_{BL} .
- 3. Suppose that the boat travels in the opposite direction of the current and that the boat is moving twice as fast as the current. Draw a vector diagram to determine the velocity of the boat relative to the land, v_{BL} .
- 4. Suppose that the boat travels in a direction perpendicular to the current and that the boat is moving twice as fast as the current. Draw a vector diagram to determine the velocity of the boat relative to the land, v_{BL} .

2.	3.	4.

5. Assume that the boat travels with a speed of 4.0 km/h relative to the current and that the current moves due east at a speed of 2.0 km/h relative to the land. Determine the velocity of the boat relative to the land for each of the situations described in items 2-4.

- a. **v**_{BL} for item 2 _____
- b. **v**_{BL} for item 3 _____
- c. **v**_{BL} for item 4 _____

6. A plane moving east drops a crate from 2000 meters above the ground. Assuming there is no air resistance; draw the path of the crate from the perspective of someone on the ground and as the pilot.