## Coulomb's Law Math Help

$$
F=K \frac{q_{A} q_{B}}{r^{2}}
$$

[^0]A proton and an electron are separated by a distance of $5.3 \times 10^{-11}$ meters.
Find the magnitude of the electric force and the gravitational force that each particle exerts on the other.

## Givens:

$$
F=K \frac{q_{A} q_{B}}{r^{2}}
$$

$r=5.3 \times 10^{-11}$ meters
$\mathrm{K}_{\mathrm{C}}=8.99 \times 10^{9} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{C}^{2}$
$\mathrm{m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
$\mathrm{G}=6.673 \times 10^{-11} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$q_{e}=-1.6 \times 10^{-19} \mathrm{C}$
$q_{p}=1.6 \times 10^{-19} \mathrm{C}$
$m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
$\mathrm{F}=$


2 point charges of $+60 \mu \mathrm{C}$ and $+50 \mu \mathrm{C}$ exert a force on each other of 175 N . what is the distance between the 2 charges?
Givens:
$\mathrm{K}_{\mathrm{C}}=8.99 \times 10^{9} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{C}^{2}$
$\mathrm{q}_{\mathrm{A}}=60 \times 10^{-6} \mathrm{C}$
$\mathrm{q}_{\mathrm{B}}=40 \times 10^{-6} \mathrm{C}$
$\mathrm{F}=175 \mathrm{~N}$
$r=$


[^0]:    A balloon is rubbed against a jacket and gains a charge of -8 microcoulombs. What is the electric force between the balloon and the jacket if the 2 are separated by 5 cm ? (Assume these are point charges) Givens: $r=0.05$ meters $\mathrm{K}_{\mathrm{c}}=8.99 \times 10^{9} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{C}^{2}$
    $q_{\text {balloon }}=-8 \times 10^{-6} \mathrm{C}$
    $q_{\text {jacket }}=8 \times 10^{-6} \mathrm{C}$
    $\mathrm{F}=$

