Electric Field Strength Math Help

$$
E=K \frac{q}{r^{2}}
$$

A charge of $7 \times 10^{-6} \mathrm{C}$ is at the origin and a charge of $-5 \times 10^{-6} \mathrm{C}$ is on the x -axis at 0.3 meters. (See below) Find the electric field strength at point " P ", which is 0.4 meters above charge 1 on the y-axis.
$\mathrm{q}_{1}=7 \times 10^{-6} \mathrm{C}$
$q_{2}=-5 \times 10^{-6} \mathrm{C}$
$E=K \frac{q_{A}}{r^{2}}$

Givens:
$r_{1,2}=0.3$ meters
$r_{1, \mathrm{p}}=0.4$ meters
$\mathrm{r}_{2, \mathrm{p}}=0.5$ meters
$\mathrm{q}_{1}=7 \times 10^{-6} \mathrm{C}$
$\mathrm{q}_{2}=-5 \times 10^{-6} \mathrm{C}$
$\mathrm{K}_{\mathrm{C}}=8.99 \times 10^{9} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{C}^{2}$
$\theta=53.1^{\circ}$
$E_{p}=$ \qquad

A charge $\left(q_{1}\right)$ of $5 \times 10^{-6} \mathrm{C}$ is at the origin and a second charge $\left(\mathrm{q}_{2}\right)^{\text {of }}-3 \times 10^{-6} \mathrm{C}$ is located 0.8 meters to the right. What is the electric field at a point on the y -axis that is 0.5 m above q_{1} ?

Givens:

[^0]
[^0]: $r_{1,2}=0.8$ meters
 $r_{1, p}=0.5$ meters
 $r_{2, p}=0.94$ meters
 $\mathrm{q}_{1}=5 \times 10^{-6} \mathrm{C}$
 $q_{2}=-3 \times 10^{-6} \mathrm{C}$
 $\mathrm{K}_{\mathrm{C}}=8.99 \times 10^{9} \mathrm{~N}^{*} \mathrm{~m}^{2} / \mathrm{C}^{2}$
 $\theta=58^{\circ}$
 $\mathrm{E}_{\mathrm{p}}=$

