Equilibrant

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem

- Find the equilibrant for the following: \qquad
$F_{1}=75 \mathrm{~N}$ at 20° north of east
$F_{2}=124 \mathrm{~N}$ at 20° west of north
$F_{3}=12 \mathrm{~N}$ at 20° east of north
$\mathrm{F}_{4}=164 \mathrm{~N}$ at 85° south of east
$\mathrm{F}_{1}=75 \mathrm{~N}$ at 20° north of east
$\mathrm{F}_{2}=124 \mathrm{~N}$ at 20° west of north
$F_{3}=12 \mathrm{~N}$ at 20° east of north
$\mathrm{F}_{4}=164 \mathrm{~N}$ at 85° south of east

[^0]
[^0]: $X_{1}=70.48 \mathrm{~N}(\mathrm{E})$ $X_{2}=-42.41 \mathrm{~N}(\mathrm{~W})$
 $\mathrm{X}_{3}=4.10 \mathrm{~N}(\mathrm{E})$
 $X_{3}=14.26 \mathrm{~N}(\mathrm{E})$
 $\mathrm{X}_{\text {total }}=46.46 \mathrm{~N}(\mathrm{E})$
 $\mathrm{Y}_{1}=25.35 \mathrm{~N}(\mathrm{~N})$ $Y_{1}=25.35 \mathrm{~N}(\mathrm{~N})$
 $\mathrm{Y}_{2}=116.52 \mathrm{~N}(\mathrm{~N})$ $\mathrm{Y}_{2}=116.52 \mathrm{~N}(\mathrm{~N})$ $Y_{3}=11.28 \mathrm{~N}(\mathrm{~N})$
 $Y_{4}=-163.38 \mathrm{~N}(\mathrm{~S})$ $\mathrm{Y}_{\text {total }}=-9.93 \mathrm{~N}(\mathrm{~S})$

