Mechanical Advantage and Efficiency Math Help

$$
M A=\frac{F_{\text {out }}}{F_{\text {in }}}=\frac{d_{\text {in }}}{d_{\text {out }}} \quad \text { eff }=\frac{W_{\text {out }}}{W_{\text {in }}} x 100
$$

You are using a machines with a MA of 2.4. What amount of force will the machine produce if you input 200 N ?

$$
M A=\frac{F_{\text {out }}}{F_{\text {in }}}=\frac{d_{\text {in }}}{d_{\text {out }}}
$$

What is the MA of a machine that produces 1050 N when 600 N is applied?

If you apply a force 3.5 meters from the fulcrum of a lever and the lever has a MA of 3.6, how long is the output arm?

A lever has a 3 meter long arm and a 2 meter long arm. What is the MA if you apply the force to the 3 meter side?

$$
M A=\frac{F_{\text {out }}}{F_{\text {in }}}=\frac{d_{\text {in }}}{d_{\text {out }}}
$$

A lever has a 3 meter long arm and a 2 meter long arm. What is the MA if you apply the force to the 2 meter side?

A jack requires 808 J of work to be done in raising a load, and ideally would do this amount of useful work. However, internal friction reduces the jack's efficiency to 0.625 . How much useful work is done by the jack?

$$
\text { eff }=\frac{W_{\text {out }}}{W_{\text {in }}} \times 100
$$

A jack requires 808 J of work to be done in raising a load, and ideally would do this amount of useful work. If the jack produces 750 J of work, what is the efficiency of the jack??

