1.2 Measurements in Experiments

Objectives

- List basic SI units and the quantities they describe.
- **Convert** measurements into scientific notation.
- Distinguish between accuracy and precision.
- Use significant figures in measurements and calculations.

Dimension vs Unit

- A *dimension* refers to the physical quantity (length, time)
- A *unit* refers to the numerical measurement of a dimension

5 meters

60 seconds

SI Units

• The SI units are internationally agreed upon fundamental units of measurement

• There are _____ base units

SI Base Units

[
SI Base Units		
Base Quantity	Base Unit	Symbol
Length	Meter	
Mass	Kilogram	
Time	Second	
Temperature	Kelvin	
Amount of Substance	Mole	
Electric Current	Ampere	
Luminous Intensity	Candela	

Not a Base Unit

- Some measurements cannot be measured with the 7 base units
- <u>Derived units</u> are formed by combining the seven base units with multiplication or division. For example, speeds are typically expressed in units of meters per second (m/s).

Extreme Measurements

- Very large or small numbers can be converted into scientific notation
- Diameter of the Earth = 12742000 meters
- Quick Examples
 4556 cm

0.00062 m

Converting

You can also convert from one unit to another unit

Kilo, Hecto, Deka, BASE UNIT, Deci, Centi, Milli K h da ?? D c m

- 1565 m = _____ km
- 2.5 km = _____ m

Combining Units

- You can also combine these units

 They MUST have the same label
- 3 m * 2 m = _____ m²
- 3 m * 2000 mm = _____ m²

Accuracy and Precision

- Accuracy is a description of how close a measurement is to the correct or accepted value of the quantity measured.
- **Precision** is the degree of exactness of a measurement.
- A numeric measure of confidence in a measurement or result is known as uncertainty. A lower uncertainty indicates greater confidence.

Error

- Some ways to minimize error in experiments
 - Start measurements from 10 cm, NOT 0
 - Be aware of Parallax
- What determine the precision of a measurement?
 - The instrument (i.e. mass to 0.1 or 0.01)
 - i.e., hard to measure the thickness of a penny with a ruler that only goes down to cm

Significant Figures

- Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat <u>uncertain or is estimated</u>.
- The term significant **does not** mean certain.

Significant Figures Rules

- <u>All nonzero digits</u> in a measurement are significant, but not all zeros are significant.
- Zeros BETWEEN nonzero numbers ARE significant
- Zeros after the decimal and before a nonzero number are NOT significant
- Zeros after nonzero numbers but before the decimal are NOT significant
- Zeros after nonzero numbers AND after the decimal ARE significant

Refer to your handout

Sig Fig Quick Practice

- 123456
- 0.00250
- 1252300
- 50584.2302
- 12500.0

Sig Fig Rules

- Adding and subtracting
 - Cannot be more precise that the LEAST precise

21.32 + 150 =

Sig Fig Rules

- Multiplying and dividing
 - Cannot have more sig figs than the number with the least sig figs

5.2 * 456 =