1.2 Measurements in Experiments

Objectives

- List basic SI units and the quantities they \qquad describe.
- Convert measurements into scientific notation.
- Distinguish between accuracy and precision.
- Use significant figures in measurements and calculations.

Dimension vs Unit

- A dimension refers to the physical quantity (length, time)
- A unit refers to the numerical measurement of a dimension

5 meters
60 seconds

SI Units

- The SI units are internationally agreed upon fundamental units of measurement
- There are \qquad base units

SI Base Units

SI Base Units		
Base Quantity	Base Unit	Symbol
Length	Meter	
Mass	Kilogram	
Time	Second	
Temperature	Kelvin	
Amount of Substance	Mole	
Electric Current	Ampere	
Luminous Intensity	Candela	

Not a Base Unit

- Some measurements cannot be measured \qquad with the 7 base units
- Derived units are formed by combining the seven base units with multiplication or division. For example, speeds are typically expressed in units of meters per second (m / s).

Extreme Measurements

- Very large or small numbers can be converted into scientific notation
- Diameter of the Earth $=12742000$ meters
- Quick Examples
$4556 \mathrm{~cm} \quad 0.00062 \mathrm{~m}$

Converting

- You can also convert from one unit to another unit
Kilo, Hecto, Deka, BASE UNIT, Deci, Centi, Milli
K h da ?? D c m
- $1565 \mathrm{~m}=$ \qquad km
- $2.5 \mathrm{~km}=$ \qquad m

Combining Units

- You can also combine these units
- They MUST have the same label
$3 \mathrm{~m} * 2 \mathrm{~m}=$ \qquad m^{2}
$3 \mathrm{~m} * 2000 \mathrm{~mm}=$ \qquad m^{2}

Accuracy and Precision

- Accuracy is a description of how close a measurement is to the correct or accepted value of the quantity measured.
- Precision is the degree of exactness of a measurement.
- A numeric measure of confidence in a measurement or result is known as uncertainty. A lower uncertainty indicates greater confidence.

Error

- Some ways to minimize error in experiments
- Start measurements from 10 cm , NOT 0
- Be aware of Parallax
- What determine the precision of a measurement?
- The instrument (i.e. mass to 0.1 or 0.01)
- i.e., hard to measure the thickness of a penny with a ruler that only goes down to cm

Significant Figures

- Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat uncertain or is estimated.
- The term significant does not mean certain.

Significant Figures Rules

- All nonzero digits in a measurement are significant, but not all zeros are significant.
- Zeros BETWEEN nonzero numbers ARE significant
- Zeros after the decimal and before a nonzero number are NOT significant
- Zeros after nonzero numbers but before the decimal are NOT significant
- Zeros after nonzero numbers AND after the decimal ARE significant

Refer to your handout

Sig Fig Quick Practice

- 123456
- 0.00250
- 1252300
- 50584.2302
- 12500.0

Sig Fig Rules

- Adding and subtracting
- Cannot be more precise that the LEAST precise
$21.32+150=$

Sig Fig Rules

- Multiplying and dividing
- Cannot have more sig figs than the number with the least sig figs
$5.2 * 456=$

