Projectile Motion

Section 3.3

Objectives

- Recognize examples of projectile motion.
- Describe the path of a projectile as a parabola.
- Resolve vectors into their components and apply the kinematic equations to solve problems involving projectile motion.

Projectiles

- Objects that are thrown or launched into the air and are subject to gravity are called projectiles.
- Projectile motion is the curved path that an object follows when thrown, launched, or otherwise projected near the surface of Earth.
- If air resistance is disregarded, projectiles follow parabolic trajectories.
- What would happen to the motion if air resistance is NOT ignored?
\qquad

Projectiles

- The vertical and horizontal motion of a projectile are independent of each other
- The horizontal motion is constant

Pushed off a cliff... \qquad
\qquad
Vertical Motion that Falls From Rest
$v_{f, y}=a_{y} \Delta t$ \qquad
$v_{f, y}{ }^{2}=2 a_{y} \Delta y$
$\Delta y=\frac{1}{2} a_{y}(\Delta t)^{2}$

Horizontal Motion of a Projectile

$v_{x}=v_{i}=$ constant

$$
\Delta x=v_{x} \Delta t
$$

\qquad
\qquad

Draw Example

Shot in the air...

$$
\begin{gathered}
v_{x}=v_{x, i}=v_{i} \cos \theta=\text { constant } \\
\Delta x=\left(v_{i} \cos \theta\right) \Delta t \\
v_{y, f}=v_{i} \sin \theta+a_{y} \Delta t \\
v_{y, f}^{2}=v_{i}^{2}(\sin \theta)^{2}+2 a_{y} \Delta y \\
\Delta y=\left(v_{i} \sin \theta\right) \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}
\end{gathered}
$$

Draw Example

Solving Projectile Motion Problems

- Resolve the vector into " X " and " Y "
- In the vertical direction, the acceleration a_{y} will equal, $g\left(-9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$ because the only vertical component of acceleration is free-fall acceleration.
- In the horizontal direction, the acceleration is zero, so the velocity is constant.

Solving Projectile Motion Problems

- Projectiles Launched Horizontally
- The initial vertical velocity is 0 .
- The initial horizontal velocity is the initial velocity.
- Projectiles Launched At An Angle
- Resolve the initial velocity into x and y components.
- The initial vertical velocity is the y component.
- The initial horizontal velocity is the x component.

Solving Projectile Motion Problems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Other Videos \qquad
\qquad

- Remember to look at the math

