Projectile Motion

Section 3.3

Objectives

- Recognize examples of projectile motion.
- **Describe** the path of a projectile as a parabola.
- **Resolve** vectors into their components and **apply** the kinematic equations to **solve** problems involving projectile motion.

Projectiles

- Objects that are thrown or launched into the air and are subject to gravity are called projectiles.
- **Projectile motion** is the curved path that an object follows when thrown, launched, or otherwise projected near the surface of Earth.
- If air resistance is <u>disregarded</u>, projectiles follow **parabolic trajectories**.
 - What would happen to the motion if air resistance is NOT ignored?

Projectiles

- The vertical and horizontal motion of a projectile are independent of each other
 - The horizontal motion is constant

Pushed off a cliff...

Vertical Motion that Falls From Rest

 $v_{f,y} = a_y \Delta t$ $v_{f,y}^2 = 2a_y \Delta y$ $\Delta y = \frac{1}{2}a_y (\Delta t)^2$

Horizontal Motion of a Projectile $v_x = v_i = constant$ $\Delta x = v_x \Delta t$

Draw Example

Shot in the air...

 $v_x = v_{x,i} = v_i \cos \theta = constant$ $\Delta x = (v_i \cos \theta) \Delta t$ $v_{y,f} = v_i \sin \theta + a_y \Delta t$ $v_{y,f}^2 = v_i^2 (\sin \theta)^2 + 2a_y \Delta y$ $\Delta y = (v_i \sin \theta) \Delta t + \frac{1}{2} a_y (\Delta t)^2$

Draw Example

Solving Projectile Motion Problems

- Resolve the vector into "X" and "Y"
- In the <u>vertical</u> direction, the acceleration a_y will equal, g (-9.81 m/s²) because the only vertical component of acceleration is free-fall acceleration.
- In the <u>horizontal</u> direction, the acceleration is zero, so the <u>velocity is constant</u>.

Solving Projectile Motion Problems

• Projectiles Launched Horizontally

- The initial vertical velocity is 0.
- The initial horizontal velocity is the initial velocity.

• Projectiles Launched At An Angle

- Resolve the initial velocity into *x* and *y* components.
- The initial vertical velocity is the y component.
- The initial horizontal velocity is the x component.

Solving Projectile Motion Problems

Other Videos

• Remember to look at the math