Chapter 5

Work and NRG

5.1

\qquad

Work

Objectives

- Recognize the difference between the scientific and ordinary definitions of work.
- Define work by relating it to force and displacement.
- Identify where work is being performed in a variety of situations.
- Calculate the net work done when many forces are applied to an object.

Work - Everyday

- When I carry a 35 kg box across the room, am \qquad I doing work on the box?
- When I do a wall sit, am I doing work on the wall?

Work - Physics

- When I lift a 35 kg box off the ground, am I doing work on the box?
- When I push a car down the road, am I doing work on the car?

What is the difference between everyday work and physics work?

Work - Physics

- Work is done on an object when a force \qquad causes a displacement of the object.
- Work is done only when components of a force are parallel to a displacement.

Sign of Work

- Work can be positive or negative
- Positive work happens when the force and the direction of displacement are...
- Negative work happens when the force and the direction of displacement are...

Work

- Work $(J)=F_{\text {net }}(N) *$ displacement (m)
- $\mathrm{W}=\mathrm{Fd}$
- How much work is done on a box when a 50 N force (to the right) moves the box 3 meters (to the right)?

$\mathrm{w}=\mathrm{Fd}$
 Practice

How much work is done on a box pulled 3 meters by a force of 50 N at an angle of 30° above the horizontal?

How much work is done when you apply a 195 N force to the right on a 45 kg box and it is moved 5 meters to the right across the floor? (the coefficient of kinetic friction is 0.24) $\mathrm{w}=\mathrm{Fd}$
$\mathrm{F}_{\mathrm{N}}=9.81 * 45=441.45 \mathrm{~N}$
$\mathrm{~F}_{\mathrm{f}}=441.45 * 0.24=105.95 \mathrm{~N}$ (left)
$\mathrm{F}_{\text {net }}=195-105.95=89.05 \mathrm{~N}$ (right)
$\mathrm{W}=89.05 * 5=445.25 \mathrm{~J}$

How much work is done when you apply a 250 N force (parallel to surface) on a 45 kg box and it is moved 5 meters across the floor? $\quad \mathrm{W}=$
(the coefficient of kinetic friction is 0.24 and the floor is elevated at an angle
of 15 degrees N of E)

$\mathrm{F}_{\mathrm{g}}=9.81 * 45=441.45 \mathrm{~N}$
 $\mathrm{F}_{\mathrm{gy}}=\cos (15) * 441.45=426.41 \mathrm{~N}$
 $\mathrm{F}_{\mathrm{fy}}=426.41^{*} 0.24=102.34 \mathrm{~N}$
 $\mathrm{F}_{\mathrm{gx}}=\sin (15) * 441.45=114.26 \mathrm{~N}$
 $\mathrm{F}_{\mathrm{net}, \mathrm{x}}=250-(114.26+102.34)=33.4 \mathrm{~N}$
 $\mathrm{W}=33.4^{*} 5=167 \mathrm{~J}$

Assignment

- Q: 1-3,5,6 - Due tomorrow
- 5.1 Pack
- SP - A

