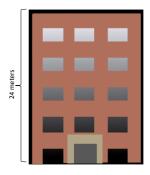
NRG	
NNO	
5.2	
Objectives	
Identify several forms of energy.Calculate kinetic energy for an object.	
• Apply the work–kinetic energy theorem to solve	
problems.	
Distinguish between kinetic and potential energy.	
Classify different types of potential energy.	
• Calculate the potential energy associated with an object's position.	
Kinetic NRG	
Kinetic NRG (J) is the NRG of motion	
$KE = \frac{1}{2}mv^2$	
 Kinetic NRG depends on mass and speed Which has more KE if they are moving at the same speed? Golf ball or Ping Pong ball? Why? 	
5 - 5	
Vinatic NPC is a scalar quantity	
· Kinetic NRG is a scalar quantity	
	1

What is the KE of a 1.5 kg block moving with a speed of 2.3 m/s?	
What is the mass of a box with a KE of 1500 J and a speed of 52	
m/s?	
Work-Kinetic NRG Theorem	
Work Rifferic WKG Theorem Work _{net} = change in Kinetic NRG	
$W_{net} = \Delta KE$	
$Fd = (\frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2)$	
Math Practice	
Be sure to look at the Work-Kinetic NRG Math	
Practice Video!	
A	
Work In Progress	


Potential NRG

- Potential NRG is stored NRG
- **Gravitational Potential NRG** (GPE) is stored NRG because of location

GPE = mgh

- *Note the height is the distance the object can fall
 - Not necessarily how high off the ground

Not to scale

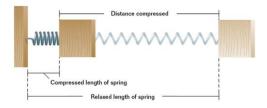
Question...

- 1. What does increasing the mass do to the GPE?
- 2. What does increasing the speed do to GPE?
- 3. What does increasing the height do to GPE?
- 4. What does changing the planet do to GPE?

Elastic Potential NRG

- Elastic Potential NRG (EPE) is the NRG stored when an object is deformed
 - Spring
 - Rubber band
 - Ball
- The *relaxed length* of a spring/rubber band is the length when it is..... relaxed
- The EPE depends on how much it is moved from the relaxed length

Elastic Potential NRG


$$EPE = \frac{1}{2}kx^2$$

EPE = ½ * spring constant * distance²

Spring constant is a measurement of a springs resistance to change

Distance = distance compressed/stretched

Spring

,		
,		

Math Practice	
Be sure to look at the Elastic Potential NRG Math Practice Video!	
	-
Page 165 – Sample Problem	
What is the question asking?	
What do we need to figure out?	
On Board	
Assignment	
Q: 1-3, 4(a, c, d)	
5.2 Pack	
SP – B, C	