5.3	
Conservation of NRG	
Objectives	
 Identify situations in which conservation of mechanical energy is valid. 	
Recognize the forms that conserved energy	
can take.	
Solve problems using conservation of	
mechanical energy.	
Mechanical NRG	
 Mechanical NRG is the sum of KE and all forms of PE 	
ME = KE + PE	
ME is conserved, it just transforms NRG	
"types"	
$ME_i = ME_f$ (In the absence of friction)	

ME "lost"	
When friction is brought in ME seems to be lost	
 This is because the NRG is converted into NRG that is hard to determine Heat Sound Etc. 	
NRG is still conserved, it just seems lost	
ME Equations	
$ME = KE + PE$ $ME_i = ME_f$ $KE_i + PE_i = KE_f + PE_f$ $\frac{1}{2}mv^2 + mgh = \frac{1}{2}mv^2 + mgh$	
May substitute or add EPE	
$\frac{1}{2}mv^2$ +mgh = $\frac{1}{2}mv^2$ + mgh Starting from rest, a girl slides down a frictionless slide. If the slide is 3 meters tall and she has a mass of 25 kg, what is her speed at the bottom of the slide?	
Givens: g = 9.8 m/s2 m = 25 kg h = 3 m	
v=	

$\frac{1}{2}mv^2 + mgh = \frac{1}{2}mv^2 + mgh$ A bird is flying with a speed of 18 m/s over the ground when it drops a 2 kg fish. What is the speed of the fish when it strikes the ground if the bird was 5.4 meters above the ground?	
h = 5.4 m m = 2 kg g = 9.8 m/s ²	
v _i = 18 m/s v _i =	
Assignment	
• Q: 2,3	
• Pack 5.3	
• SP - D	