Motion in 1 direction

Physics - Ch 2

Objectives

- Describe motion in terms of frame of reference, displacement, time, and velocity.
- Calculate the displacement of an object traveling at a known velocity for a specific time interval.
- Construct and interpret graphs of position versus time.

1 dimensional motion

- One dimensional motion takes place in ONE dimension
- North and South
- Up and Down
- Forwards and backwards
- Train on the tracks
- To measure motion, you must choose a frame of reference. A frame of reference is a system for specifying the precise location of objects in space and time.

Displacement

- Displacement is the change in position
- It does NOT have to equal the distance covered
- Ex. Walk to school
- Ex. Walk to school and back home

$$
\Delta x=x_{f}-x_{i}
$$

displacement $=$ final position - initial position

Positive and Negative Displacements \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice

	Displacement	Distance
30 mNand 20 m N		
30 mNand 20 m S		
$5 \mathrm{mN}, 6 \mathrm{mS}, 8 \mathrm{~m} \mathrm{~N}$		

Coordinate system

- Positive directions are..
- Up
- North
- East
- Right

Ave. Velocity

- Average velocity is the total displacement divided by the time interval during which the displacement occurred.

$$
v_{\text {ave }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

- This is an AVERAGE! You could be going any velocity during the "trip"

Velocity and Speed

Velocity describes motion with both a direction and a numerical value (a magnitude).
Speed has no direction, only magnitude.
Average speed is equal to the total distance traveled divided by the time interval.

$$
\text { average speed }=\frac{\text { distance traveled }}{\text { change in time }}
$$

Math

- Watch the Average Velocity Video to see how to complete the math!

Ex.

- Is the following a speed, velocity, or neither? \qquad
$-45 \mathrm{~m} / \mathrm{s}$
$-6.7 \mathrm{~cm} / \mathrm{h}$
$-12 \mathrm{~m} / \mathrm{s} \mathrm{N}$
$-15 \mathrm{E}$
- $100 \mathrm{~km} / \mathrm{h}$ NE
$-56 \mathrm{~g} / \mathrm{ml}$

Interpreting Velocity Graphically

- For any position-time graph, we can determine the average velocity by drawing a straight line between any two points on the graph
- If the velocity is constant, the graph of position versus time is a straight line. The slope indicates the velocity.
Object 1: positive slope = positive velocity
Object 2: zero slope= zero velocity
Object 3: negative slope $=$ negative

Instantaneous Velocity

- The instantaneous velocity is the velocity of an object at some instant or at a specific point in the object's path.

