2.2 Acceleration

Objectives

- Describe motion in terms of changing velocity. \qquad
- Compare graphical representations of accelerated and nonaccelerated motions. \qquad
- Apply kinematic equations to calculate distance, time, or velocity under conditions of constant acceleration.

Deconstructing a Sentence

- Slows down = Accel and Velocity in opposite directions
- Speeds up = Accel and Velocity in same direction
- Starts from rest $=$ Initial velocity is ZERO
- Stops = Final velocity is ZERO

Changes in V

- Acceleration is the rate at which velocity changes of time
- Acceleration has direction and magnitude because it is a vector
- An object accelerates if it...
- Changes speed
- Changes direction

Acceleration

\qquad

$$
\Delta v=v_{f}-v_{i} \quad \Delta t=t_{f}-t_{i} \quad a=\frac{\Delta v}{\Delta t}
$$

- Solve for final velocity $\Delta t a+v_{i}=v_{f}$
- Solve for initial velocity $v_{f}-\Delta t a=v_{i}$

Math

- Velocity Equations is: $\quad v=\frac{d}{t}$
- Acceleration equations is: $a=\frac{v_{f}-v_{i}}{\Delta t}$
- Combine them to get

$$
a=\frac{\frac{d}{t_{f}}-\frac{d}{t_{i}}}{\Delta t}
$$

Assignments

- Sample Problem B

Acceleration

- Consider a train moving to the right, so that \qquad the displacement and the velocity are positive. \qquad
- The slope of the velocity-time graph is the average acceleration.
- When the velocity in the positive direction is increasing, the acceleration is positive, as at \mathbf{A}.
- When the velocity is constant, there is no acceleration, as at B.
- When the velocity in the positive direction is decreasing, the acceleration is negative, as at \mathbf{C}.

Visual Concept

Accel (cont)

$\boldsymbol{v}_{\mathbf{1}}$	\boldsymbol{a}	Motion
+	+	speeding up speeding up
-	-	slowing down slowing down
+	-	constant velocity
-	0	speeding up from rest
- or +	0	remaining at rest

Demo

- Tiles and walking
- Constant Clapping/Beeping
- Constant
- Increasing
- Decreasing

Questions

- Pg 46 - Conceptual Challenge \#2 and \#3
\qquad
\qquad
- Pg 47 - Fig 2.4
- Create a line graph of something moving with a constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$.
- Graph velocity vs. time \qquad
- What do you notice?

Equations for Constantly Accelerated Straight-Line Motion

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) \Delta t$	$\Delta x=\frac{1}{2} v_{f} \Delta t$
$v_{f}=v_{i}+a \Delta t$	$v_{f}=a \Delta t$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a(\Delta t)^{2}$	$\Delta x=\frac{1}{2} a(\Delta t)^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	$v_{f}^{2}=2 a \Delta x$

Assignment

- Supp Prob B, C, D, E
- Q: 5,
- Practice problems on pgs 49, 51, 54
- Packet 2A-2E
- Odds

