2.2 Acceleration

Objectives

- Describe motion in terms of changing velocity.
- **Compare** graphical representations of accelerated and nonaccelerated motions.
- **Apply** kinematic equations to **calculate** distance, time, or velocity under conditions of constant acceleration.

Deconstructing a Sentence

- Slows down = Accel and Velocity in opposite directions
- Speeds up = Accel and Velocity in same direction
- Starts from rest = Initial velocity is ZERO
- Stops = Final velocity is ZERO

Changes in V

- Acceleration is the rate at which velocity changes of time
- Acceleration has direction and magnitude because it is a **vector**
- An object accelerates if it...
 - Changes speed
 - Changes direction

Acceleration

$$\Delta v = v_f - v_i$$
 $\Delta t = t_f - t_i$ $a = \frac{\Delta v}{\Delta t}$

- Solve for final velocity $\Delta ta + v_i = v_f$
- Solve for initial velocity $v_f \Delta t a = v_i$

Math

• Velocity Equations is: $v = \frac{d}{t}$

- Acceleration equations is: $a = \frac{v_f v_i}{\Delta t}$
- Combine them to get: $a = \frac{d}{t_f} \frac{d}{t_i} \label{eq:a}$ $a = \frac{\Delta t}{\Delta t}$

Assignments

• Sample Problem B

Acceleration

- Consider a train moving to the right, so that the displacement and the velocity are positive.
- The slope of the velocity-time graph is the average acceleration.
 - When the velocity in the positive direction is increasing, the acceleration is positive, as at **A**.

 - When the velocity is constant, there is no acceleration, as at B.
 When the velocity in the positive direction is decreasing, the acceleration is negative, as at C.

Visual Concept

Accel (cont)

vi	a	Motion
+	+	speeding up
-	-	speeding up
+	-	slowing down
-	+	slowing down
– or +	0	constant velocity
0	- or +	speeding up from rest
0	0	remaining at rest

Demo

- Tiles and walking
- Constant Clapping/Beeping
- Constant
- Increasing
- Decreasing

Questions

- Pg 46 Conceptual Challenge #2 and #3
- Pg 47 Fig 2.4
 - Create a line graph of something moving with a constant acceleration of 3 $\ensuremath{m/s^2}$.

Graph velocity vs. time

- What do you notice?

Equations for Constantly Accelerated Straight-Line Motion

Form to use when accelerating object has an initial velocity	Form to use when accelerating object starts from rest
$\Delta x = \frac{1}{2}(\nu_i + \nu_f)\Delta t$	$\Delta x = \frac{1}{2} \nu_f \Delta t$
$v_f = v_i + a\Delta t$	$v_f = a \Delta t$
$\Delta x = \nu_i \Delta t + \frac{1}{2} a (\Delta t)^2$	$\Delta x = \frac{1}{2}a(\Delta t)^2$
$v_f^2 = v_i^2 + 2a\Delta x$	$v_f^2 = 2a\Delta x$

Assignment

- Supp Prob B, C, D, E
- Q: 5,
- Practice problems on pgs 49, 51, 54
- Packet 2A 2E
 - Odds