2.3 Falling Objects

Objectives

- Relate the motion of a freely falling body to \qquad motion with constant acceleration.
- Calculate displacement, velocity, and time at various points in the motion of a freely falling object.
- Compare the motions of different objects in free fall.

Free Fall

- Free fall is the motion of a body when only the force due to gravity is acting on the body.
- The acceleration on an object in free fall is called the acceleration due to gravity, or freefall acceleration.
- Free-fall acceleration is denoted with the symbols $\boldsymbol{a}_{\boldsymbol{g}}$ (generally) or \boldsymbol{g} (on Earth's surface).

Free Fall Acceleration

- Free-fall acceleration is the same for all objects, regardless of mass.
- This book will use the value $\boldsymbol{g}=\mathbf{- 9 . 8 1} \mathbf{~ m} / \mathrm{s}^{2}$.
- Free-fall acceleration on Earth's surface is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ at all points in the object's motion.
- Consider a ball thrown up into the air.
- Moving upward: velocity is decreasing, acceleration is $-9.81 \mathrm{~m} / \mathrm{s}^{2}$
- Top of path: velocity is zero, acceleration is $-9.81 \mathrm{~m} / \mathrm{s}^{2}$
- Moving downward: velocity is increasing, acceleration is $-9.81 \mathrm{~m} / \mathrm{s}^{2}$

Practice Problems

- A brick falls from the top of a building and smashes on the ground. If the building is 250 meters tall, what is the final velocity the instant before it strikes the ground?
- How long did it take the brick to hit the ground?

Figure 3.3

- Page 57
- What is this showing?
- Could this graph be a representation of Fig 3.2? Why or why not.

Quick Lab

- Page 58 - Rxn time

Assignments

- Q: $1,2,4,5$
- Supp Prob F

Take It Further

- Get into small groups and read "Take it Further"
- You will have to explain this to the class and Mr. Gunkelman.

EOCQ

- 2,4-7,9-16,20,21,24,28,30,39

