4.3

Newton's $2^{\text {nd }}$ and $3^{\text {rd }}$ Laws

Objectives

- Describe an object's acceleration in terms of \qquad its mass and the net force acting on it.
- Predict the direction and magnitude of the acceleration caused by a known net force. \qquad
\qquad
- Identify action-reaction pairs.

Using Newton's $2^{\text {nd }}$ Law

- The acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the object's mass.

$$
\mathrm{a}=\mathrm{F} / \mathrm{m}
$$

- OR...Newton's second law states the force equals mass times acceleration
F = ma

Thinking...

- $F=m a$....... $\quad a=F / m$
- Does it take more force to accelerate a dodgeball or bowling ball to $4 \mathrm{~m} / \mathrm{s}^{2}$?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using Newton's $2^{\text {nd }}$ Law

\qquad

- In free-fall the only force acting on an object is the force of gravity (F_{g})
- Looking at the figure and understanding that $\mathrm{F}=\mathrm{ma}$
- We can say that
$\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$, because the only force acting on the ball is gravity

\qquad
\qquad
\qquad
\qquad
\qquad

Question

\qquad

- Would your weight be the same on the moon? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Using Newton's $2^{\text {nd }}$ Law

\qquad

- How does a scale work?
- How does a bathroom scale work?
- When you stand on the scale, the spring in the scale exerts an upward force on you because you are in contact with it.
- Because you are not accelerating, the net force acting on you must be zero.
- The spring force, $F_{\text {sp }}$, upwards must be the same magnitude as your weight, F_{g},

\qquad
\qquad
\qquad
\qquad downwards.

Newton's $3^{\text {rd }}$ Law

\qquad
\qquad

- Newton's $3^{\text {rd }}$ Law states, for every action there
\qquad
\qquad
\qquad
\qquad
\qquad

Interaction Forces

\qquad

- Suppose you and your friend are wearing \qquad rollerblades
- If you push your friend away from you, what is \qquad going to happen to you?
- Forces always occur in pairs
- There are called action-reaction forces

Action-Reaction Forces

- Action-reaction pairs do not imply that the net force on either object is zero.
- The action-reaction forces are equal and opposite, but either object may still have a net force on it. (Remember $\mathrm{F}=\mathrm{ma}$)
 which drives the nail into the wood.

Interaction Forces

Example Problem

- You lift a bottle off the ground.
- What are the forces acting on the bottle?
- Gravity of Earth (Down), hand up
- What force does the bottle exert?
- Hand down, (Earth up ?)

