Physics Equation Sheet

Chapter 2: Motion in One Dimension

 Displacement$$
\Delta x=x_{f}-x_{i}
$$

Average Velocity

$$
v_{\mathrm{avg}}=\Delta x / \Delta t
$$

$$
=\left(x_{f}-x_{i}\right) /\left(t_{f}-t_{i}\right)
$$

Average Acceleration

$$
\begin{gathered}
a_{a v g}=\Delta v / \Delta t \\
=\left(v_{f}-v_{i}\right) /\left(t_{f}-t_{i}\right)
\end{gathered}
$$

Displacement with Constant Acceleration

$$
\Delta x=1 / 2\left(v_{f}-v_{i}\right) \Delta t
$$

Velocity with Constant Acceleration

$$
v_{f}=v_{i}+a \Delta t
$$

Displacement with Constant Acceleration

$$
\Delta x=v_{i} \Delta t+1 / 2 a(\Delta t)^{2}
$$

Final Velocity After Any Displacement

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

Chapter 3: Two-Dimensional Motion and Vectors
Pythagorean Theorem for Right Triangles

$$
c^{2}=a^{2}+b^{2}
$$

Definition of the Tangent Function for Right
Triangles
Tan $\theta=$ Opposite / Adjacent
Definition of the Sine Function for Right
Triangles
$\operatorname{Sin} \theta=$ Opposite $/$ Hypotenuse
Definition of the Cosine Function for Right Triangles
$\operatorname{Cos} \theta=$ Adjacent $/$ Hypotenuse
Vertical Motion of a Projectile That Falls
from Rest
$v_{y, f}=a_{y} \Delta t$
$v_{y, f}{ }^{2}=2 a_{y} \Delta y$

$$
\Delta y=1 / 2 a_{y}(\Delta t)^{2}
$$

Horizontal Motion of a Projectile

$$
\begin{aligned}
\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{x}, \mathrm{i}} & =\text { constant } \\
\Delta \mathrm{x} & =\mathrm{v}_{\mathrm{x}} \Delta \mathrm{t}
\end{aligned}
$$

Projectiles Launched at an Angle

$$
v_{x}=v_{x, i}=v_{i} \cos \theta=\text { constant }
$$

$$
\Delta x=\left(v_{i} \cos \theta\right) \Delta t
$$

$$
V_{y, f}=v_{i} \sin \theta+a_{y} \Delta t
$$

$$
\mathrm{V}_{\mathrm{y}, \mathrm{f}} \mathrm{f}^{2}=\mathrm{v}_{\mathrm{i}}^{2}(\sin \theta)^{2}+2 \mathrm{a}_{\mathrm{y}} \Delta \mathrm{y}
$$

$$
\Delta y=\left(v_{i} \sin \theta\right) \Delta t+1 / 2 a_{y}(\Delta t)^{2}
$$

Student Resource Page

Equation Sheet

Chapter 4: Forces and the Laws of Motion
Newton's Second Law

$$
\sum \mathrm{F}=\mathrm{ma}
$$

Coefficient of Friction Forces

$$
\begin{aligned}
& \mu_{k}=F_{k} / F_{n} \\
& \mu_{s}=F_{s} / F_{n}
\end{aligned}
$$

Chapter 5: Work and Energy
 Work
 $\mathrm{W}=\mathrm{Fd}$

Net Work Done by a Constant Net Force

$$
W_{\text {net }}=F_{\text {net }} d \cos \theta
$$

Kinetic Energy

$$
K E=1 / 2 \mathrm{mv}^{2}
$$

Work-Kinetic Energy Theorem

$$
\mathrm{W}_{\text {net }}=\Delta \mathrm{KE}
$$

Gravitational Potential Energy

$$
P E_{g}=m g h
$$

Elastic Potential Energy
$P E_{\text {elastic }}=1 / 2 k x^{2}$
Conservation of Mechanical Energy

$$
\mathrm{ME}_{\mathrm{i}}=\mathrm{ME}_{f}
$$

Power
$\mathrm{P}=\mathrm{W} / \Delta \mathrm{t}$
$\mathrm{P}=\mathrm{Fv}$

Student Resource Page

Chapter 6: Momentum and Collisions
Momentum
$\mathrm{P}=\mathrm{mv}$

Conservation of Momentum
$m_{1} v_{1, i}+m_{2} v_{2, i}=m_{1} v_{1, f}+m_{2} v_{2, f}$
Perfect Inelastic Collision
$m_{1} v_{1, i}+m_{2} v_{2, i}=\left(m_{1}+m_{2}\right) v_{f}$
Conservation of Kinetic Energy in Elastic
Collision
$1 / 2 m_{1} v_{1, i}{ }^{2}+1 / 2 m_{2} v_{2, i}{ }^{2}=1 / 2 m_{1} v_{1, f}{ }^{2}+1 / 2 m_{2} v_{2, f}{ }^{2}$

Chapter 7: Circular Motion and Gravitation
Centripetal Acceleration

$$
a_{c}=v_{t}^{2} / r
$$

Centripetal Force

$$
F_{c}=\left(m v_{t}^{2}\right) / r
$$

Newton's Law of Universal Gravitation

$$
F_{g}=G\left(m_{1} m_{2} / r^{2}\right)
$$

Period of an Object in Circular Orbit

$$
\begin{gathered}
\mathrm{T}=2 \pi\left(\mathrm{r}^{3} / \mathrm{Gm}\right)^{1 / 2} \\
\text { Speed of an Object in Circular Orbit } \\
\mathrm{V}_{\mathrm{t}}=(\mathrm{Gm} / \mathrm{r})^{1 / 2} \\
\text { Torque } \\
\mathrm{T}=\mathrm{Fd} \sin \theta \\
\text { Torque Net } \\
\mathrm{T}_{\text {net }}=\Sigma \mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{F}_{1} \mathrm{~d}_{1}+\left(-\mathrm{F}_{2} \mathrm{~d}_{2}\right) \\
\text { Mechanical } \text { Advantage } \\
\mathrm{MA}=\mathrm{F}_{\text {out }} / \mathrm{F}_{\text {in }} \\
=\mathrm{d}_{\text {in }} / \mathrm{d}_{\text {out }}
\end{gathered}
$$

Conservation of Torque
$T_{\text {in }}=T_{\text {out }}$

$$
\mathrm{F}_{\text {in }} \mathrm{d}_{\text {in }}=\mathrm{F}_{\text {out }} \mathrm{d}_{\text {out }}
$$

Efficiency
$\mathrm{W}_{\text {out }} / \mathrm{W}_{\text {in }}$

