Physics Equation Sheet

Chapter 2: Motion in One Dimension

Displacement $\Delta x = x_{f} - x_{i}$

Average Velocity $v_{avg} = \Delta x / \Delta t$ $= (x_f - x_i) / (t_f - t_i)$

Average Acceleration $a_{avg} = \Delta v / \Delta t$ $= (v_f - v_i) / (t_f - t_i)$

Displacement with Constant Acceleration $\Delta x = \frac{1}{2}(v_{f} - v_{i})\Delta t$

 $\label{eq:velocity} \begin{array}{l} \textit{Velocity with Constant Acceleration} \\ v_f = v_i + a \Delta t \end{array}$

Displacement with Constant Acceleration $\Delta x = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$

Final Velocity After Any Displacement $v_f^2 = v_i^2 + 2a\Delta x$ Chapter 3: Two-Dimensional Motion and Vectors Pythagorean Theorem for Right Triangles $c^2 = a^2 + b^2$

Definition of the Tangent Function for Right Triangles Tan θ = Opposite / Adjacent

Definition of the Sine Function for Right Triangles Sin θ = Opposite / Hypotenuse

Definition of the Cosine Function for Right Triangles Cos θ = Adjacent / Hypotenuse

Vertical Motion of a Projectile That Falls from Rest $v_{y,f} = a_y \Delta t$ $v_{y,f}^2 = 2a_y \Delta y$ $\Delta y = \frac{1}{2} a_v (\Delta t)^2$

Horizontal Motion of a Projectile $v_x = v_{x,i} = \text{constant}$ $\Delta x = v_x \Delta t$

Projectiles Launched at an Angle $v_{x =} v_{x,i} = v_i \cos \theta = \text{constant}$ $\Delta x = (v_i \cos \theta) \Delta t$ $V_{y,f} = v_i \sin \theta + a_y \Delta t$ $V_{y,f}^2 = v_i^2 (\sin \theta)^2 + 2a_y \Delta y$ $\Delta y = (v_i \sin \theta) \Delta t + \frac{1}{2} a_y (\Delta t)^2$

Chapter 4: Forces and the Laws of Motion

Newton's Second Law

∑F = ma

 $\begin{array}{l} \textit{Coefficient of Friction Forces} \\ \mu_k = F_k / F_n \\ \mu_s = F_s / F_n \end{array}$

Chapter 5: Work and Energy Work W = Fd

Net Work Done by a Constant Net Force $W_{net} = F_{net} \, d \, \cos \theta \label{eq:Wnet}$

Kinetic Energy KE = $\frac{1}{2}$ mv²

Work-Kinetic Energy Theorem $W_{net} = \Delta KE$

Gravitational Potential Energy PE_g = mgh

 $\begin{array}{l} \textit{Elastic Potential Energy} \\ \mathsf{PE}_{\mathsf{elastic}} = \frac{1}{2} \ kx^2 \\ \textit{Conservation of Mechanical Energy} \\ \mathsf{ME}_{i} = \mathsf{ME}_{f} \end{array}$

Power $P = W / \Delta t$ P = Fv

Chapter 6: Momentum and Collisions

Momentum P = mv

Conservation of Momentum $m_1v_{1,i} + m_2v_{2,i} = m_1v_{1,f} + m_2v_{2,f}$

Perfect Inelastic Collision $m_1v_{1,i} + m_2v_{2,i} = (m_1 + m_2)v_f$

Conservation of Kinetic Energy in Elastic Collision $\frac{1}{2} m_1 v_{1,i}^2 + \frac{1}{2} m_2 v_{2,i}^2 = \frac{1}{2} m_1 v_{1,f}^2 + \frac{1}{2} m_2 v_{2,f}^2$ Chapter 7: Circular Motion and Gravitation Centripetal Acceleration $a_c = v_t^2 / r$

> Centripetal Force $F_c = (mv_t^2) / r$

Newton's Law of Universal Gravitation $F_g = G (m_1m_2/r^2)$

Period of an Object in Circular Orbit $T = 2\pi (r^3 / Gm)^{\frac{1}{2}}$

Speed of an Object in Circular Orbit $v_t = (Gm / r)^{\frac{1}{2}}$

> *Torque* T = Fd sin θ

 $Torque Net T_{net} = \sum T = T_1 + T_2 = F_1d_1 + (-F_2d_2)$

 $\begin{aligned} & \textit{Mechanical Advantage} \\ & \textit{MA} = F_{out} / F_{in} \\ & = d_{in} / d_{out} \end{aligned}$

 $\begin{array}{l} \textit{Conservation of Torque} \\ T_{in} = T_{out} \\ F_{in} \, d_{in} = F_{out} \, d_{out} \end{array}$

Efficiency W_{out} / W_{in}