Projectile Motion

$2^{\text {nd }}$ video

$$
\begin{array}{ccc}
v_{x}=v_{x, i}=v_{i} \cos \theta=\text { constant } & \Delta x=\left(v_{i} \cos \theta\right) \Delta t & v_{y, f}=v_{i} \sin \theta+a_{y} \Delta t \\
v_{y, f}^{2}=v_{i}^{2}(\sin \theta)^{2}+2 a_{y} \Delta y & \text { Practice } & \Delta y=\left(v_{i} \sin \theta\right) \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}
\end{array}
$$

A projectile is launched with at an angle of 35° above the horizontal and lands 26 meters away.
a. What is the initial speed?
b. What is the max height reached?

$$
\begin{aligned}
& \frac{\text { Givens }}{\Delta y=} \\
& \mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{v}_{\mathrm{i}}= \\
& \Delta \mathrm{x}=26 \mathrm{~m} \\
& { }^{\circ}=35^{\circ}
\end{aligned}
$$

$$
\begin{array}{lll}
v_{x}=v_{x, i}=v_{i} \cos \theta=\text { constant } & \Delta x=\left(v_{i} \cos \theta\right) \Delta t & v_{y, f}=v_{i} \sin \theta+a_{y} \Delta t \\
v_{y, f}^{2}=v_{i}^{2}(\sin \theta)^{2}+2 a_{y} \Delta y & \text { PraCtice } & \Delta y=\left(v_{i} \sin \theta\right) \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}
\end{array}
$$

A projectile is launched with at an angle of 35° above the horizontal and lands 26 meters away.
a. What is the initial speed?
b. What is the max height reached?

Givens

$\Delta y=$ $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}_{\mathrm{i}}=16.51 \mathrm{~m} / \mathrm{s}$
$\Delta x=26 \mathrm{~m}$
${ }^{0}=35^{\circ}$

$$
\begin{array}{ccc}
v_{x}=v_{x, i}=v_{i} \cos \theta=\mathrm{constant} & \Delta x=\left(v_{i} \cos \theta\right) \Delta t & v_{y, f}=v_{i} \sin \theta+a_{y} \Delta t \\
v_{y, f}^{2}=v_{i}^{2}(\sin \theta)^{2}+2 a_{y} \Delta y & \text { PraCtiCe } & \Delta y=\left(v_{i} \sin \theta\right) \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2}
\end{array}
$$

A projectile is launched with at an angle of 40° above the horizontal and an initial speed of $6.44 \mathrm{~m} / \mathrm{s}$. If the projectile is in the air for 1.33 seconds, what is...
a. the horizontal displacement?
b. Vertical displacement?

Givens
$\Delta y=$ \qquad
$\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$v_{i}=6.44 \mathrm{~m} / \mathrm{s}$
$\Delta x=$ \qquad
${ }^{0}=40^{\circ}$
$\Delta \mathrm{t}=1.33 \mathrm{~s}$

