Stopping Distance

$$
\begin{aligned}
F t & =m v_{f}-m v_{i} \\
\Delta x & =\left(v_{i}+v_{f}\right) \Delta t
\end{aligned}
$$

Example

- A 2000 kg car slow uniformly from an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ by a 3300 N braking force.
A. What is the car's speed after 1.5 seconds?
B. How far does it go?
C. How long does it take to come to complete stop?

A 2000 kg car slow uniformly from an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ by a 3300 N braking force.

A. What is the car's speed after 1.5 seconds?

- How are we going to do this? $F t=m v_{f}-m v_{i}$

A 2000 kg car slow uniformly from an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ by a 3300 N braking force.
A. How far does it go?

- How are we going to do this?
- HINT: Its an old equation!

$$
\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) t
$$

A 2000 kg car slow uniformly from an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ by a 3300 N braking force.

A. How long does it take to come to complete stop?

- How are we going to do this?

$$
F t=m v_{f}-m v_{i}
$$

