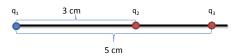
The Superposition Principle Math Help

$$F = K \frac{q_A q_B}{r^2}$$


There are 3 point charges that lie along the x-axis of a line. They are at x = 0m (q_1), x = 3 cm (q_2), and x = 5 cm (q_3). Find the magnitude of the resulting force on q_3 .

 $q_1 = 6 \times 10^{-9} C$

$$q_2 = 1.5 \times 10^{-9} C$$

$$q_3 = -2 \times 10^{-9} C$$

 $F = K \frac{q_A q_B}{r^2}$

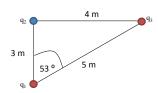
Givens:

r_{1,2} = 0.03 m

 $r_{1,3} = 0.05 \text{ m}$ $r_{3,2} = 0.02 \text{ m}$ $q_1 = 6 \times 10^{-9} \text{ C}$

q₂ = 1.5 x 10⁻⁹ C

 $q_3^- = -2 \times 10^{-9} \text{ C}$


 $K_C = 8.99 \times 10^9 \text{ N*m}^2/\text{C}^2$

There are 3 charges at the corners of a triangle. Find the magnitude of the resulting force on q₃. (See diagram below)

 $q_1 = 6 \times 10^{-9} C$

 $q_2 = -2 \times 10^{-9} C$

 $q_3 = 5 \times 10^{-9} C$

Givens:

 $r_{1,2} = 3$ meters

 $r_{1,3} = 5$ meters

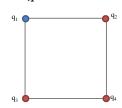
 $r_{3,2} = 4$ meters

 $q_1 = 6 \times 10^{-9} \text{ C}$

 $q_2 = -2 \times 10^{-9} \text{ C}$

 $q_3 = 5 \times 10^{-9} C$

 $K_C = 8.99 \times 10^9 \text{ N*m}^2/\text{C}^2$


F_{3, total} = ____

There are 4 point charges that lie at the corners of a 15 cm square. (See diagram) Find the magnitude of the resulting force on q_1 .

 $q_1 = 3 \times 10^{-6} C$

 $q_2 = -6 \times 10^{-6} C$

 $q_3 = -2.4 \times 10^{-6} C$ $q_4 = -9 \times 10^{-6} C$

Givens:

 $r_{1,2} = 0.15 \text{ meters}$

 $r_{1,3} = 0.15$ meters

 $r_{1,4} = 0.21$ meters

 $q_1 = 3 \times 10^{-6} \text{ C}$

 $q_2^- = -6 \times 10^{-6} \text{ C}$

 $q_3 = -2.4 \times 10^{-6} C$

 $q_4 = -9 \times 10^{-6} \text{ C}$

 $K_C = 8.99 \times 10^9 \text{ N*m}^2/\text{C}^2$

F_{1, total} = ____