Vectors and Vector Addition

Finding a resultant

A dog runs 15 m N and then turns and runs 6 m E . What is the dogs resultant?

Resolving a vector

A ball rolls 50 cm at an angle of $36^{\circ} \mathrm{N}$ or E . What are the " x " and " y " components?

Adding Vectors Algebraically

You walk 45 m at $40^{\circ} \mathrm{N}$ of E and then 23 m at $22^{\circ} \mathrm{S}$ of E .

Adding Vectors Algebraically

You walk 45 m at $40^{\circ} \mathrm{N}$ of E and then 23 m at $22^{\circ} \mathrm{S}$ of E .

Triangle 1
$y_{1}=\operatorname{Sin} 40^{\circ} * 45=28.93 \mathrm{~m} \mathrm{~N}$
$x_{1}=\operatorname{Cos} 40^{\circ} * 45=34.47 \mathrm{~m} \mathrm{E}$

Triangle 2
$y_{2}=\operatorname{Sin} 22^{\circ} * 23=8.62 \mathrm{~m} \mathrm{~S}(-)$
$x_{2}=\operatorname{Cos} 22^{\circ} * 23=21.33 \mathrm{~m} \mathrm{E}$

Adding Vectors Algebraically

You walk 45 m at $40^{\circ} \mathrm{N}$ of E and then 23 m at $22^{\circ} \mathrm{S}$ of E .

$$
\begin{aligned}
& \text { New Triangle } \\
& \begin{array}{l}
y_{R}=28.93-8.62=20.31 \mathrm{~m} \mathrm{~N} \\
\mathrm{x}_{\mathrm{R}}=34.47+21.33=55.8 \mathrm{~m} \mathrm{E} \\
\sqrt{\left(20.31^{2}+55.8^{2}\right)}=59.38 \mathrm{~m} \\
\tan ^{-1}=\left(\frac{20.31}{55.8}\right)=20^{\circ}
\end{array}
\end{aligned}
$$

